Approximation properties of mixed series in terms of Legendre polynomials on the classes $W^r$
Sbornik. Mathematics, Tome 197 (2006) no. 3, pp. 433-452 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The study of the approximation properties on the class $W^r$ of partial sums of a mixed series in terms of Legendre polynomials is continued. Bibliography: 7 titles.
@article{SM_2006_197_3_a6,
     author = {I. I. Sharapudinov},
     title = {Approximation properties of mixed series in terms of {Legendre} polynomials on the classes~$W^r$},
     journal = {Sbornik. Mathematics},
     pages = {433--452},
     year = {2006},
     volume = {197},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_3_a6/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - Approximation properties of mixed series in terms of Legendre polynomials on the classes $W^r$
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 433
EP  - 452
VL  - 197
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_3_a6/
LA  - en
ID  - SM_2006_197_3_a6
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T Approximation properties of mixed series in terms of Legendre polynomials on the classes $W^r$
%J Sbornik. Mathematics
%D 2006
%P 433-452
%V 197
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2006_197_3_a6/
%G en
%F SM_2006_197_3_a6
I. I. Sharapudinov. Approximation properties of mixed series in terms of Legendre polynomials on the classes $W^r$. Sbornik. Mathematics, Tome 197 (2006) no. 3, pp. 433-452. http://geodesic.mathdoc.fr/item/SM_2006_197_3_a6/

[1] I. I. Sharapudinov, “Priblizhenie funktsii s peremennoi gladkostyu summami Fure–Lezhandra”, Matem. sb., 191:5 (2000), 143–160 | MR | Zbl

[2] I. I. Sharapudinov, “Smeshannye ryady po ultrasfericheskim polinomam i ikh approksimativnye svoistva”, Matem. sb., 194:3 (2003), 115–148 | MR | Zbl

[3] I. I. Sharapudinov, “Approksimativnye svoistva operatorov $\mathscr Y_{n+2r}(f)$ i ikh diskretnykh analogov”, Matem. zametki, 72:5 (2002), 765–795 | MR | Zbl

[4] S. A. Telyakovskii, “Dve teoremy o priblizhenii funktsii algebraicheskimi mnogochlenami”, Matem. sb., 70:2 (1966), 252–265

[5] I. Z. Gopengauz, “K teoreme A. F. Timana o priblizhenii funktsii mnogochlenami na konechnom otrezke”, Matem. zametki, 1:2 (1967), 163–172 | MR | Zbl

[6] G. Segë, Ortogonalnye mnogochleny, Fizmatgiz, M., 1962

[7] S. A. Agakhanov, G. I. Natanson, “Funktsiya Lebega summ Fure–Yakobi”, Vestn. LGU, 1968, no. 1, 11–23 | MR | Zbl