Separation properties for closures of toric orbits
Sbornik. Mathematics, Tome 197 (2006) no. 3, pp. 415-432 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A subset $X$ of a vector space $V$ is said to have the ‘separation property’ if it separates linear forms in the following sense: for each pair $(\alpha,\beta)$ of linearly independent forms on $V$ there exists a point $x\in X$ such that $\alpha(x)=0$ and $\beta(x)\ne0$; equivalently, each homogeneous hyperplane $H\subseteq V$ is linearly spanned by its intersection with $X$. For orbit closures in representation spaces of an algebraic torus a criterion for the separation property is obtained. Strong and weak separation properties are also considered. Bibliography: 7 titles.
@article{SM_2006_197_3_a5,
     author = {O. V. Chuvashova},
     title = {Separation properties for closures of toric orbits},
     journal = {Sbornik. Mathematics},
     pages = {415--432},
     year = {2006},
     volume = {197},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_3_a5/}
}
TY  - JOUR
AU  - O. V. Chuvashova
TI  - Separation properties for closures of toric orbits
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 415
EP  - 432
VL  - 197
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_3_a5/
LA  - en
ID  - SM_2006_197_3_a5
ER  - 
%0 Journal Article
%A O. V. Chuvashova
%T Separation properties for closures of toric orbits
%J Sbornik. Mathematics
%D 2006
%P 415-432
%V 197
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2006_197_3_a5/
%G en
%F SM_2006_197_3_a5
O. V. Chuvashova. Separation properties for closures of toric orbits. Sbornik. Mathematics, Tome 197 (2006) no. 3, pp. 415-432. http://geodesic.mathdoc.fr/item/SM_2006_197_3_a5/

[1] H. Kraft, N. R. Wallach, “On the separation property of orbits in representation spaces”, J. Algebra, 258:1 (2002), 228–254 | DOI | MR | Zbl

[2] A. Premet, “Support varieties of non-restricted modules over Lie algebras of reductive groups”, J. London Math. Soc. (2), 55:2 (1997), 236–250 | DOI | MR | Zbl

[3] I. R. Shafarevich, Osnovy algebraicheskoi geometrii, Nauka, M., 1972 | MR | Zbl

[4] K. Baur, Two contributions to the representation theory of algebraic groups, Doctoral Thesis, Basel, 2002

[5] Dzh. Khamfri, Lineinye algebraicheskie gruppy, Nauka, M., 1980 | MR

[6] W. Fulton, Introduction to toric varieties, Ann. of Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl

[7] B. Sturmfels, Gröbner bases and convex polytopes, Univ. Lecture Ser., 8, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl