Separation properties for closures of toric orbits
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 197 (2006) no. 3, pp. 415-432
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A subset $X$ of a vector space $V$ is said to have the ‘separation property’ if it separates
linear forms in the following sense: for each pair $(\alpha,\beta)$ of linearly independent forms on $V$ there exists a point $x\in X$ such that $\alpha(x)=0$ and $\beta(x)\ne0$; equivalently, each homogeneous hyperplane $H\subseteq V$ is linearly spanned by its intersection with $X$.
For orbit closures in representation spaces of an algebraic torus a criterion for the separation property is obtained. Strong and weak separation properties are also considered.
Bibliography: 7 titles.
			
            
            
            
          
        
      @article{SM_2006_197_3_a5,
     author = {O. V. Chuvashova},
     title = {Separation properties for closures of toric orbits},
     journal = {Sbornik. Mathematics},
     pages = {415--432},
     publisher = {mathdoc},
     volume = {197},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_3_a5/}
}
                      
                      
                    O. V. Chuvashova. Separation properties for closures of toric orbits. Sbornik. Mathematics, Tome 197 (2006) no. 3, pp. 415-432. http://geodesic.mathdoc.fr/item/SM_2006_197_3_a5/
