Factoriality of nodal three-dimensional varieties and connectedness of the locus of log canonical singularities
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 197 (2006) no. 3, pp. 387-414
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Shokurov's vanishing theorem is used for the proof of the $\mathbb Q$-factoriality of the following nodal threefolds: a complete intersection of hypersurfaces $F$ and $G$ in $\mathbb P^5$ of degrees $n$ and $k$, $n\geqslant k$, such that $G$ is smooth and $|{\operatorname{Sing}(F\cap G)}|\leqslant(n+k-2)(n-1)/5$; a double cover of a smooth hypersurface $F\subset\mathbb P^4$ of degree $n$ branched over the surface cut on $F$ by a hypersurface $G\subset\mathbb P^4$ of degree $2r\geqslant n$, provided that $|{\operatorname{Sing}(F\cap G)}|\leqslant(2r+n-2)r/4$.
Bibliography: 71 titles.
			
            
            
            
          
        
      @article{SM_2006_197_3_a4,
     author = {I. A. Cheltsov},
     title = {Factoriality of nodal three-dimensional varieties and connectedness of the locus of log canonical singularities},
     journal = {Sbornik. Mathematics},
     pages = {387--414},
     publisher = {mathdoc},
     volume = {197},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_3_a4/}
}
                      
                      
                    TY - JOUR AU - I. A. Cheltsov TI - Factoriality of nodal three-dimensional varieties and connectedness of the locus of log canonical singularities JO - Sbornik. Mathematics PY - 2006 SP - 387 EP - 414 VL - 197 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2006_197_3_a4/ LA - en ID - SM_2006_197_3_a4 ER -
I. A. Cheltsov. Factoriality of nodal three-dimensional varieties and connectedness of the locus of log canonical singularities. Sbornik. Mathematics, Tome 197 (2006) no. 3, pp. 387-414. http://geodesic.mathdoc.fr/item/SM_2006_197_3_a4/
