Factoriality of nodal three-dimensional varieties and connectedness of the locus of log canonical singularities
Sbornik. Mathematics, Tome 197 (2006) no. 3, pp. 387-414

Voir la notice de l'article provenant de la source Math-Net.Ru

Shokurov's vanishing theorem is used for the proof of the $\mathbb Q$-factoriality of the following nodal threefolds: a complete intersection of hypersurfaces $F$ and $G$ in $\mathbb P^5$ of degrees $n$ and $k$, $n\geqslant k$, such that $G$ is smooth and $|{\operatorname{Sing}(F\cap G)}|\leqslant(n+k-2)(n-1)/5$; a double cover of a smooth hypersurface $F\subset\mathbb P^4$ of degree $n$ branched over the surface cut on $F$ by a hypersurface $G\subset\mathbb P^4$ of degree $2r\geqslant n$, provided that $|{\operatorname{Sing}(F\cap G)}|\leqslant(2r+n-2)r/4$. Bibliography: 71 titles.
@article{SM_2006_197_3_a4,
     author = {I. A. Cheltsov},
     title = {Factoriality of nodal three-dimensional varieties and connectedness of the locus of log canonical singularities},
     journal = {Sbornik. Mathematics},
     pages = {387--414},
     publisher = {mathdoc},
     volume = {197},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_3_a4/}
}
TY  - JOUR
AU  - I. A. Cheltsov
TI  - Factoriality of nodal three-dimensional varieties and connectedness of the locus of log canonical singularities
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 387
EP  - 414
VL  - 197
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_3_a4/
LA  - en
ID  - SM_2006_197_3_a4
ER  - 
%0 Journal Article
%A I. A. Cheltsov
%T Factoriality of nodal three-dimensional varieties and connectedness of the locus of log canonical singularities
%J Sbornik. Mathematics
%D 2006
%P 387-414
%V 197
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2006_197_3_a4/
%G en
%F SM_2006_197_3_a4
I. A. Cheltsov. Factoriality of nodal three-dimensional varieties and connectedness of the locus of log canonical singularities. Sbornik. Mathematics, Tome 197 (2006) no. 3, pp. 387-414. http://geodesic.mathdoc.fr/item/SM_2006_197_3_a4/