@article{SM_2006_197_3_a4,
author = {I. A. Cheltsov},
title = {Factoriality of nodal three-dimensional varieties and connectedness of the locus of log canonical singularities},
journal = {Sbornik. Mathematics},
pages = {387--414},
year = {2006},
volume = {197},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_3_a4/}
}
TY - JOUR AU - I. A. Cheltsov TI - Factoriality of nodal three-dimensional varieties and connectedness of the locus of log canonical singularities JO - Sbornik. Mathematics PY - 2006 SP - 387 EP - 414 VL - 197 IS - 3 UR - http://geodesic.mathdoc.fr/item/SM_2006_197_3_a4/ LA - en ID - SM_2006_197_3_a4 ER -
I. A. Cheltsov. Factoriality of nodal three-dimensional varieties and connectedness of the locus of log canonical singularities. Sbornik. Mathematics, Tome 197 (2006) no. 3, pp. 387-414. http://geodesic.mathdoc.fr/item/SM_2006_197_3_a4/
[1] V. A. Iskovskikh, Yu. I. Manin, “Trekhmernye kvartiki i kontrprimery k probleme Lyurota”, Matem. sb., 86:1 (1971), 140–166 | MR | Zbl
[2] A. V. Pukhlikov, “Biratsionalnye avtomorfizmy trekhmernoi kvartiki s prosteishei osobennostyu”, Matem. sb., 135(177):4 (1988), 472–496 | MR | Zbl
[3] A. Corti, “Singularities of linear systems and 3-fold birational geometry”, London Math. Soc. Lecture Note Ser., 281 (2000), 259–312 | MR | Zbl
[4] M. Mella, “Birational geometry of quartic 3-folds. II: The importance of being $\mathbb Q$-factorial”, Math. Ann., 330:1 (2004), 107–126 | DOI | MR | Zbl
[5] V. A. Iskovskikh, “Biratsionalnye avtomorfizmy trekhmernykh algebraicheskikh mnogoobrazii”, Sovr. problemy matem., 12 (1979), 159–236 | MR | Zbl
[6] A. V. Pukhlikov, “Birational automorphisms of double spaces with sigularities”, J. Math. Sci. (New York), 85:4 (1997), 2128–2141 | DOI | MR | Zbl
[7] I. Cheltsov, J. Park, Sextic double solids, arXiv: math.AG/0404452 | MR
[8] A. N. Varchenko, “O polunepreryvnosti spektra i otsenke sverkhu chisla osobykh tochek proektivnoi giperpoverkhnosti”, Dokl. AN SSSR, 270:6 (1983), 1294–1297 | MR | Zbl
[9] R. Friedman, “Simultaneous resolution of threefold double points”, Math. Ann., 274 (1986), 671–689 | DOI | MR | Zbl
[10] A. J. de Jong, N. I. Shepherd-Barron, A. Van de Ven, “On the Burkhardt quartic”, Math. Ann., 286:1–3 (1990), 309–328 | DOI | MR | Zbl
[11] H. Burkhardt, “Untersuchungen aus dem Gebiete der hyperelliptischen Modulfunctionen, II”, Math. Ann., 38 (1890), 161–224 | DOI | MR
[12] H. Burkhardt, “Untersuchungen aus dem Gebiete der hyperelliptischen Modulfunctionen, III”, Math. Ann., 41 (1893), 313–343 | DOI | MR
[13] J. A. Todd, “On a quartic primal with forty-five nodes, in space of four dimensions”, Quart. J. Math., 7 (1936), 168–174 | DOI | Zbl
[14] K. Petterson, On nodal determinantal quartic hypersurfaces in $\mathbb P^4$, Thesis, University of Oslo, 1998; http://folk.uio.no/ranestad/kfpthesis.ps
[15] G. van der Geer, “Note on abelian schemes of level three”, Math. Ann., 278 (1987), 401–408 | DOI | MR | Zbl
[16] B. Hunt, The geometry of some special arithmetic quotients, Lecture Notes in Math., 1637, Springer-Verlag, Berlin, 1996 | MR | Zbl
[17] J. W. Hoffman, S. H. Weintraub, “The Siegel modular variety of degree two and level three”, Trans. Amer. Math. Soc., 353:8 (2001), 3267–3305 | DOI | MR | Zbl
[18] K. Hulek, G. K. Sankaran, “The geometry of Siegel modular varieties”, Higher dimensional birational geometry (Kyoto, Japan, 1997), Adv. Stud. Pure Math., 35, 2002, 89–156 | MR | Zbl
[19] A. Andreotti, T. Frankel, “The Lefschetz theorem on hyperplane sections”, Ann. of Math. (2), 69 (1959), 713–717 | DOI | MR | Zbl
[20] R. Bott, “On a theorem of Lefschetz”, Michigan Math. J., 6 (1959), 211–216 | DOI | MR | Zbl
[21] W. Barth, “Two projective surfaces with many nodes, admitting the symmetries of the icosahedron”, J. Algebraic Geom., 5:1 (1996), 173–186 | MR | Zbl
[22] D. B. Jaffe, D. Ruberman, “A sextic surface cannot have 66 nodes”, J. Algebraic Geom., 6:1 (1997), 151–168 | MR | Zbl
[23] J. Wahl, “Nodes on sextic hypersurfaces in $\mathbb P^3$”, J. Differential Geom., 48:3 (1998), 439–444 | MR | Zbl
[24] F. Catanese, G. Ceresa, “Constructing sextic surfaces with a given number $d$ of nodes”, J. Pure Appl. Algebra, 23 (1982), 1–12 | DOI | MR | Zbl
[25] S. Endraß, “On the divisor class group of double solids”, Manuscripta Math., 99:3 (1999), 341–358 | DOI | MR | Zbl
[26] C. H. Clemens, “Double solids”, Adv. Math., 47 (1983), 107–230 | DOI | MR | Zbl
[27] J. Werner, “Kleine Auflösungen spezieller dreidimensionaler Varietäten”, Bonner Math. Schriften, 186, Univ. Bonn, Math. Inst., Bonn, 1987 | MR
[28] A. Dimca, “Betti numbers of hypersufaces and defects of linear systems”, Duke Math. J., 60:1 (1990), 285–298 | DOI | MR | Zbl
[29] S. Cynk, “Defect of a nodal hypersurface”, Manuscripta Math., 104:3 (2001), 325–331 | DOI | MR | Zbl
[30] C. Voisin, Hodge theory and complex algebraic geometry, II, Cambridge Stud. Adv. Math., 77, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl
[31] J. W. Milnor, Singular points of complex hypersurfaces, Princeton Univ. Press, Princeton, NJ, 1968 | MR | Zbl
[32] I. Cheltsov, “On factoriality of nodal threefolds”, J. Algebraic Geom., 14:4 (2005), 663–690 | MR | Zbl
[33] V. V. Shokurov, “Trekhmernye log-perestroiki”, Izv. AN SSSR. Ser. matem., 56:1 (1992), 105–203 | MR | Zbl
[34] J. Kollár (ed.), Flips and abundance for algebraic threefolds, Papers from the Second Summer Seminar on Algebraic Geometry (University of Utah, Salt Lake City, UT, 1991), Astérisque, 211, Soc. Math. France, Paris, 1992 | MR
[35] J. Kollár, “Singularities of pairs”, Algebraic geometry (Santa Cruz, CA, USA, 1995), Proc. Symp. Pure. Math., 62, Amer. Math. Soc., Providence, RI, 1997, 221–287 | MR | Zbl
[36] F. Ambro, “Ladders on Fano varieties”, J. Math. Sci. (New York), 94 (1999), 1126–1135 | DOI | MR | Zbl
[37] C. Ciliberto, V. di Gennaro, “Factoriality of certain hypersurfaces of $\mathbb P^4$ with ordinary double points”, Algebraic transformation groups and algebraic varieties (Vienna, Austria, 2001), Encyclopaedia Math. Sci., 132, Springer-Verlag, Berlin, 2004, 1–7 | MR | Zbl
[38] H. Finkelberg, J. Werner, “Small resolutions of nodal cubic threefolds”, Indag. Math. (N.S.), 51:2 (1989), 185–198 | MR
[39] I. Cheltsov, “Nonrational nodal quartic threefolds”, Pacific J. Math., 226:1 (2006), 65–81 ; arXiv: math.AG/0405150 | Zbl
[40] M. Reid, “Chapters on algebraic surfaces”, Complex algebraic geometry (Park City, UT, 1993), IAS/Park City Math. Ser., 3, ed. J. Kollár, Providence, RI, Amer. Math. Soc., 1997, 5–159 | MR | Zbl
[41] F. Bardelli, “Polarized mixed Hodge structures: on irrationality of threefolds via degeneration”, Ann. Mat. Pura Appl. (4), 137 (1984), 287–369 | DOI | MR | Zbl
[42] I. V. Sobolev, “Biratsionalnye avtomorfizmy odnogo klassa mnogoobrazii, rassloennykh na kubicheskie poverkhnosti”, Izv. RAN. Ser. matem., 66:1 (2002), 203–224 | MR | Zbl
[43] I. A. Cheltsov, “Metod vyrozhdeniya i neratsionalnost trekhmernykh mnogoobrazii s puchkom poverkhnostei del Petstso”, UMN, 59:4 (2004), 203–204 | MR | Zbl
[44] C. H. Clemens, P. A. Griffiths, “The intermediate Jacobian of the cubic threefold”, Ann. of Math. (2), 95 (1972), 281–356 | DOI | MR | Zbl
[45] J. Kollár, “Flops”, Nagoya Math. J., 113 (1989), 15–36 | MR | Zbl
[46] B. Hunt, “Nice modular varieties”, Experiment. Math., 9 (2000), 613–622 | MR | Zbl
[47] H. Finkelberg, “Small resolutions of the Segre cubic”, Indag. Math. (N.S.), 49 (1987), 261–277 | MR
[48] D. Grayson, M. Stillman, Macaulay 2: a software system for algebraic geometry and commutative algebra, http://www.math.uiuc.edu/Macaulay2
[49] D. Eisenbud, D. Grayson, M. Stillman, B. Sturmfels (eds.), Computations in algebraic geometry with Macaulay 2, Algorithms Comput. Math., 8, Springer-Verlag, Berlin, 2002 | MR
[50] C. Borcea, “Nodal quintic threefolds and nodal octic surfaces”, Proc. Amer. Math. Soc., 109 (1990), 627–635 | DOI | MR | Zbl
[51] B. Kreussler, “Another description of certain quartic double solids”, Math. Nachr., 212 (2000), 91–100 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[52] M. Reid, “Graded rings and birational geometry”, Proc. of Algebraic Geometry Symposium (Kinosaki, October 2000), 2000, 1–72; http://www.maths.warwick.ac.uk/~miles/3folds/Ki/Ki.pdf
[53] A. Corti, “Factoring birational maps of threefolds after Sarkisov”, J. Algebraic Geom., 4:2 (1995), 223–254 | MR | Zbl
[54] A. R. Iano-Fletcher, “Working with weighted complete intersections”, London Math. Soc. Lecture Note Ser., 281 (2000), 101–173 | MR
[55] A. Corti, A. Pukhlikov, M. Reid, “Fano 3-fold hypersurfaces”, London Math. Soc. Lecture Note Ser., 281 (2000), 175–258 | MR | Zbl
[56] I. Dolgachev, “Weighted projective varieties”, Group actions and vector fields (Vancouver, 1981), Lecture Notes in Math., 956, 1982, 34–71 | MR | Zbl
[57] A. Grothendieck, Cohomologie locale des faisceaux cohérents et théorémes de Lefschetz locaux et globaux, Séminaire de géométrie algébrique du Bois Marie, 1962, Soc. Math. France, Paris, 2005 | MR | Zbl
[58] F. Call, G. Lyubeznik, “A simple proof of Grothendieck's theorem on the parafactoriality of local rings”, Contemp. Math., 159 (1994), 15–18 | MR | Zbl
[59] I. A. Cheltsov, “Regulyarizatsiya biratsionalnykh avtomorfizmov”, Matem. zametki, 76:2 (2004), 286–299 | MR | Zbl
[60] R. Elkik, “Rationalite des singularites canoniques”, Invent. Math., 64 (1981), 1–6 | DOI | MR | Zbl
[61] V. A. Iskovskikh, “Faktorizatsiya biratsionalnykh otobrazhenii ratsionalnykh poverkhnostei s tochki zreniya teorii Mori”, UMN, 51:4 (1996), 3–72 | MR | Zbl
[62] Ch. Schoen, “Algebraic cycles on certain desingularized nodal hypersurfaces”, Math. Ann., 279 (1985), 17–27 | DOI | MR
[63] E. Bese, “On the spannedness and very ampleness of certain line bundles on the blow-ups of $\mathbb P^2_{\mathbb C}$ and $F^r$”, Math. Ann., 262 (1983), 225–238 | DOI | MR | Zbl
[64] M. Demazure, “Surfaces de del Pezzo”, Séminaire sur les Singularités des Surfaces (Palaiseau, 1976–77), Lecture Notes in Math., 777, Springer, Berlin, 1980, 21–69 | MR
[65] F. Hidaka, K. Watanabe, “Normal Gorenstein surfaces with ample anti-canonical divisor”, Tokyo J. Math., 4 (1981), 319–330 | MR | Zbl
[66] H. Maeda, “Surfaces with nef anticanonical bundles”, Boll. Union Mat. Ital., 8 (1994), 425–430 | MR | Zbl
[67] E. D. Davis, A. V. Geramita, “Birational morphisms to $\mathbb P^2$: an ideal-theoretic perspective”, Math. Ann., 279 (1988), 435–448 | DOI | MR | Zbl
[68] Y. Kawamata, K. Matsuda, K. Matsuki, “Introduction to the minimal model problem”, Adv. Stud. Pure Math., 10 (1987), 283–360 | MR | Zbl
[69] Yu. Kawamata, “A generalization of Kodaira–Ramanujam's vanishing theorem”, Math. Ann., 261 (1982), 43–46 | DOI | MR | Zbl
[70] V. Viehweg, “Vanishing theorems”, J. Reine Angew. Math., 335 (1982), 1–8 | MR | Zbl
[71] C. Ciliberto, V. di Gennaro, “Factoriality of certain threefolds complete intersection in $\mathbb P^5$ with ordinary double points”, Comm. Algebra, 32:7 (2004), 2705–2710 | DOI | MR | Zbl