The matrix analogue of the Blackwell renewal theorem on the real line
Sbornik. Mathematics, Tome 197 (2006) no. 3, pp. 369-386

Voir la notice de l'article provenant de la source Math-Net.Ru

The full analogue of Blackwell's theorem is proved for a matrix renewal measure on the whole real line, both in the non-lattice and in the lattice cases. A complete result on a decomposition of Stone type for a matrix renewal measure is obtained. Asymptotic properties of solutions of systems of integral equations of renewal type on the real line are established. Bibliography: 21 titles.
@article{SM_2006_197_3_a3,
     author = {M. S. Sgibnev},
     title = {The matrix analogue of the {Blackwell} renewal theorem on the real line},
     journal = {Sbornik. Mathematics},
     pages = {369--386},
     publisher = {mathdoc},
     volume = {197},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_3_a3/}
}
TY  - JOUR
AU  - M. S. Sgibnev
TI  - The matrix analogue of the Blackwell renewal theorem on the real line
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 369
EP  - 386
VL  - 197
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_3_a3/
LA  - en
ID  - SM_2006_197_3_a3
ER  - 
%0 Journal Article
%A M. S. Sgibnev
%T The matrix analogue of the Blackwell renewal theorem on the real line
%J Sbornik. Mathematics
%D 2006
%P 369-386
%V 197
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2006_197_3_a3/
%G en
%F SM_2006_197_3_a3
M. S. Sgibnev. The matrix analogue of the Blackwell renewal theorem on the real line. Sbornik. Mathematics, Tome 197 (2006) no. 3, pp. 369-386. http://geodesic.mathdoc.fr/item/SM_2006_197_3_a3/