The matrix analogue of the Blackwell renewal theorem on the real line
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 197 (2006) no. 3, pp. 369-386
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The full analogue of Blackwell's theorem is proved for a matrix renewal measure on the whole real line, both in the non-lattice and in the lattice cases. A complete result on a decomposition of Stone type for a matrix renewal measure is obtained. Asymptotic properties of solutions of systems of integral equations of renewal type on the real line are established.
Bibliography: 21 titles.
			
            
            
            
          
        
      @article{SM_2006_197_3_a3,
     author = {M. S. Sgibnev},
     title = {The matrix analogue of the {Blackwell} renewal theorem on the real line},
     journal = {Sbornik. Mathematics},
     pages = {369--386},
     publisher = {mathdoc},
     volume = {197},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_3_a3/}
}
                      
                      
                    M. S. Sgibnev. The matrix analogue of the Blackwell renewal theorem on the real line. Sbornik. Mathematics, Tome 197 (2006) no. 3, pp. 369-386. http://geodesic.mathdoc.fr/item/SM_2006_197_3_a3/
