The Hardy--Littlewood--P\'olya inequality for analytic functions in Hardy--Sobolev spaces
Sbornik. Mathematics, Tome 197 (2006) no. 3, pp. 315-334
Voir la notice de l'article provenant de la source Math-Net.Ru
For a function of a complex variable analytic in a strip the extremum of the $L_2(\mathbb R)$ norm of the $k$th derivative is found under a constraint on the $L_2(\mathbb R)$-norm of the function and the norm of its $n$th derivative in the metric of the Hardy–Sobolev space. The closely connected problem of the optimal recovery of the $k$th derivative of a function in the Hardy–Sobolev class from the inaccurately given trace of this function on the real axis
is also studied. An optimal recovery method is found.
Bibliography: 10 titles.
@article{SM_2006_197_3_a1,
author = {K. Yu. Osipenko},
title = {The {Hardy--Littlewood--P\'olya} inequality for analytic functions in {Hardy--Sobolev} spaces},
journal = {Sbornik. Mathematics},
pages = {315--334},
publisher = {mathdoc},
volume = {197},
number = {3},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_3_a1/}
}
K. Yu. Osipenko. The Hardy--Littlewood--P\'olya inequality for analytic functions in Hardy--Sobolev spaces. Sbornik. Mathematics, Tome 197 (2006) no. 3, pp. 315-334. http://geodesic.mathdoc.fr/item/SM_2006_197_3_a1/