The Hardy–Littlewood–Pólya inequality for analytic functions in Hardy–Sobolev spaces
Sbornik. Mathematics, Tome 197 (2006) no. 3, pp. 315-334 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a function of a complex variable analytic in a strip the extremum of the $L_2(\mathbb R)$ norm of the $k$th derivative is found under a constraint on the $L_2(\mathbb R)$-norm of the function and the norm of its $n$th derivative in the metric of the Hardy–Sobolev space. The closely connected problem of the optimal recovery of the $k$th derivative of a function in the Hardy–Sobolev class from the inaccurately given trace of this function on the real axis is also studied. An optimal recovery method is found. Bibliography: 10 titles.
@article{SM_2006_197_3_a1,
     author = {K. Yu. Osipenko},
     title = {The {Hardy{\textendash}Littlewood{\textendash}P\'olya} inequality for analytic functions in {Hardy{\textendash}Sobolev} spaces},
     journal = {Sbornik. Mathematics},
     pages = {315--334},
     year = {2006},
     volume = {197},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_3_a1/}
}
TY  - JOUR
AU  - K. Yu. Osipenko
TI  - The Hardy–Littlewood–Pólya inequality for analytic functions in Hardy–Sobolev spaces
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 315
EP  - 334
VL  - 197
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_3_a1/
LA  - en
ID  - SM_2006_197_3_a1
ER  - 
%0 Journal Article
%A K. Yu. Osipenko
%T The Hardy–Littlewood–Pólya inequality for analytic functions in Hardy–Sobolev spaces
%J Sbornik. Mathematics
%D 2006
%P 315-334
%V 197
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2006_197_3_a1/
%G en
%F SM_2006_197_3_a1
K. Yu. Osipenko. The Hardy–Littlewood–Pólya inequality for analytic functions in Hardy–Sobolev spaces. Sbornik. Mathematics, Tome 197 (2006) no. 3, pp. 315-334. http://geodesic.mathdoc.fr/item/SM_2006_197_3_a1/

[1] G. G. Khardi, Dzh. E. Littlvud, G. Polia, Neravenstva, IL, M., 1948

[2] E. Landau, “Einige Ungleichungen für zweimal differenzierbare Funktionen”, London Math. Soc. Proc. (2), 13 (1913), 43–49 | DOI | Zbl

[3] A. N. Kolmogorov, “O neravenstvakh mezhdu verkhnimi granyami posledovatelnykh proizvodnykh proizvolnoi funktsii na beskonechnom intervale”, Izbrannye trudy. Matematika i mekhanika, Nauka, M., 1985, 252–261 | MR

[4] G. G. Magaril-Ilyaev, V. M. Tikhomirov, “O neravenstvakh dlya proizvodnykh kolmogorovskogo tipa”, Matem. sb., 188:12 (1997), 73–106 | MR | Zbl

[5] A. S. Kochurov, G. G. Magaril-Il'yaev, V. M. Tikhomirov, “Inequalities for derivatives on a line and a half-line and problems of recovery”, East J. Approx., 10:1–2 (2004), 231–260 | MR | Zbl

[6] K. Yu. Osipenko, “Neravenstva dlya proizvodnykh analiticheskikh v polose funktsii”, Matem. zametki, 56:4 (1994), 114–122 | MR | Zbl

[7] I. Stein, G. Veis, Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | MR | Zbl

[8] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[9] G. G. Magaril-Ilyaev, K. Yu. Osipenko, “Optimalnoe vosstanovlenie funktsii i ikh proizvodnykh po koeffitsientam Fure, zadannym s pogreshnostyu”, Matem. sb., 193:3 (2002), 79–100 | MR | Zbl

[10] G. G. Magaril-Ilyaev, K. Yu. Osipenko, “Optimalnoe vosstanovlenie funktsii i ikh proizvodnykh po priblizhennoi informatsii o spektre i neravenstva dlya proizvodnykh”, Funkts. analiz i ego prilozh., 37:3 (2003), 51–64 | MR | Zbl