The Hardy--Littlewood--P\'olya inequality for analytic functions in Hardy--Sobolev spaces
Sbornik. Mathematics, Tome 197 (2006) no. 3, pp. 315-334

Voir la notice de l'article provenant de la source Math-Net.Ru

For a function of a complex variable analytic in a strip the extremum of the $L_2(\mathbb R)$ norm of the $k$th derivative is found under a constraint on the $L_2(\mathbb R)$-norm of the function and the norm of its $n$th derivative in the metric of the Hardy–Sobolev space. The closely connected problem of the optimal recovery of the $k$th derivative of a function in the Hardy–Sobolev class from the inaccurately given trace of this function on the real axis is also studied. An optimal recovery method is found. Bibliography: 10 titles.
@article{SM_2006_197_3_a1,
     author = {K. Yu. Osipenko},
     title = {The {Hardy--Littlewood--P\'olya} inequality for analytic functions in {Hardy--Sobolev} spaces},
     journal = {Sbornik. Mathematics},
     pages = {315--334},
     publisher = {mathdoc},
     volume = {197},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_3_a1/}
}
TY  - JOUR
AU  - K. Yu. Osipenko
TI  - The Hardy--Littlewood--P\'olya inequality for analytic functions in Hardy--Sobolev spaces
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 315
EP  - 334
VL  - 197
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_3_a1/
LA  - en
ID  - SM_2006_197_3_a1
ER  - 
%0 Journal Article
%A K. Yu. Osipenko
%T The Hardy--Littlewood--P\'olya inequality for analytic functions in Hardy--Sobolev spaces
%J Sbornik. Mathematics
%D 2006
%P 315-334
%V 197
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2006_197_3_a1/
%G en
%F SM_2006_197_3_a1
K. Yu. Osipenko. The Hardy--Littlewood--P\'olya inequality for analytic functions in Hardy--Sobolev spaces. Sbornik. Mathematics, Tome 197 (2006) no. 3, pp. 315-334. http://geodesic.mathdoc.fr/item/SM_2006_197_3_a1/