Estimates for the error of approximation of classes of differentiable functions by Faber--Schauder partial sums
Sbornik. Mathematics, Tome 197 (2006) no. 3, pp. 303-314

Voir la notice de l'article provenant de la source Math-Net.Ru

In the metric of the space $\varphi(L)$ generated by a continuous even function $\varphi(x)$ increasing on $[0,\infty)$ such that $\varphi(0)=0$, $\lim_{x\to\infty}\varphi(x)=\infty$ one finds estimates of the error of approximation by partial sums of Faber–Schauder series in the function classes $C^1$ and $W^1H_\omega$, where $\omega(t)$ is a concave modulus of continuity. Bibliography: 21 titles.
@article{SM_2006_197_3_a0,
     author = {S. B. Vakarchuk and A. N. Shchitov},
     title = {Estimates for the error of approximation of classes of differentiable functions by {Faber--Schauder} partial sums},
     journal = {Sbornik. Mathematics},
     pages = {303--314},
     publisher = {mathdoc},
     volume = {197},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_3_a0/}
}
TY  - JOUR
AU  - S. B. Vakarchuk
AU  - A. N. Shchitov
TI  - Estimates for the error of approximation of classes of differentiable functions by Faber--Schauder partial sums
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 303
EP  - 314
VL  - 197
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_3_a0/
LA  - en
ID  - SM_2006_197_3_a0
ER  - 
%0 Journal Article
%A S. B. Vakarchuk
%A A. N. Shchitov
%T Estimates for the error of approximation of classes of differentiable functions by Faber--Schauder partial sums
%J Sbornik. Mathematics
%D 2006
%P 303-314
%V 197
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2006_197_3_a0/
%G en
%F SM_2006_197_3_a0
S. B. Vakarchuk; A. N. Shchitov. Estimates for the error of approximation of classes of differentiable functions by Faber--Schauder partial sums. Sbornik. Mathematics, Tome 197 (2006) no. 3, pp. 303-314. http://geodesic.mathdoc.fr/item/SM_2006_197_3_a0/