Solubility on compact subsets for differential equations with real principal pencil of symbols
Sbornik. Mathematics, Tome 197 (2006) no. 2, pp. 281-302 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The central result is a theorem on the solubility on compact subsets for differential equations of quasiprincipal type with real principal pencil of symbols. The proof is based on the analysis of the microlocal structure of the singularities of solutions of equations in this class. Bibliography: 11 titles.
Keywords: solvability.
Mots-clés : distribution, wavefront set
@article{SM_2006_197_2_a8,
     author = {N. A. Shananin},
     title = {Solubility on compact subsets for differential equations with real principal pencil of symbols},
     journal = {Sbornik. Mathematics},
     pages = {281--302},
     year = {2006},
     volume = {197},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_2_a8/}
}
TY  - JOUR
AU  - N. A. Shananin
TI  - Solubility on compact subsets for differential equations with real principal pencil of symbols
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 281
EP  - 302
VL  - 197
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_2_a8/
LA  - en
ID  - SM_2006_197_2_a8
ER  - 
%0 Journal Article
%A N. A. Shananin
%T Solubility on compact subsets for differential equations with real principal pencil of symbols
%J Sbornik. Mathematics
%D 2006
%P 281-302
%V 197
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2006_197_2_a8/
%G en
%F SM_2006_197_2_a8
N. A. Shananin. Solubility on compact subsets for differential equations with real principal pencil of symbols. Sbornik. Mathematics, Tome 197 (2006) no. 2, pp. 281-302. http://geodesic.mathdoc.fr/item/SM_2006_197_2_a8/

[1] J. J. Duistermaat , L. Hörmander, “Fourier integral operators, II”, Acta Math., 128:3–4 (1972), 183–269 | DOI | MR | Zbl

[2] L. Khërmander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, t. 1–4, Mir, M., 1986–1988

[3] N. A. Shananin, “O lokalnoi razreshimosti uravnenii kvaziglavnogo tipa”, Matem. sb., 97(139):4 (1975), 503–516 | MR | Zbl

[4] L. R. Volevich, S. G. Gindikin, “Mnogogrannik Nyutona i lokalnaya razreshimost lineinykh differentsialnykh uravnenii v chastnykh proizvodnykh”, Trudy MMO, 48, 1985, 211–262 | MR

[5] L. R. Volevich, S. G. Gindikin, Metod mnogogrannika Nyutona v teorii differentsialnykh uravnenii v chastnykh proizvodnykh, URSS, M., 2002

[6] L. Khërmander, K teorii obschikh differentsialnykh operatorov v chastnykh proizvodnykh, IL, M., 1959

[7] V. V. Grushin, N. A. Shananin, “Nekotorye teoremy ob osobennostyakh reshenii differentsialnykh uravnenii so vzveshennymi glavnymi simvolami”, Matem. sb., 103(145):1 (1977), 37–51 | MR | Zbl

[8] R. Lascar, “Propagation des singularités des solutions d'équations pseudo-différentieles quasi homogènes”, Ann. Inst. Fourier (Grenoble), 27:2 (1977), 79–123 | MR | Zbl

[9] T. Sakurai, “Propagation of regularities of solutions to semilinear partial differential equations of quasi homogeneous type”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 33:2 (1986), 347–378 | MR | Zbl

[10] C. Parenti, F. Sigala, “Propagation and reflection of singularities for a class of evolution equations”, Comm. Partial Differential Equations, 6:7 (1981), 741–782 | DOI | MR | Zbl

[11] R. Edvards, Funktsionalnyi analiz: teoriya i prilozheniya, Mir, M., 1969