Solubility on compact subsets for differential equations with real principal pencil of symbols
Sbornik. Mathematics, Tome 197 (2006) no. 2, pp. 281-302
Voir la notice de l'article provenant de la source Math-Net.Ru
The central result is a theorem on the solubility on compact subsets for differential equations of quasiprincipal type with real principal pencil of symbols. The proof is based on the analysis of the microlocal structure of the singularities of solutions of equations in this class.
Bibliography: 11 titles.
Keywords:
solvability.
Mots-clés : distribution, wavefront set
Mots-clés : distribution, wavefront set
@article{SM_2006_197_2_a8,
author = {N. A. Shananin},
title = {Solubility on compact subsets for differential equations with real principal pencil of symbols},
journal = {Sbornik. Mathematics},
pages = {281--302},
publisher = {mathdoc},
volume = {197},
number = {2},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_2_a8/}
}
TY - JOUR AU - N. A. Shananin TI - Solubility on compact subsets for differential equations with real principal pencil of symbols JO - Sbornik. Mathematics PY - 2006 SP - 281 EP - 302 VL - 197 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2006_197_2_a8/ LA - en ID - SM_2006_197_2_a8 ER -
N. A. Shananin. Solubility on compact subsets for differential equations with real principal pencil of symbols. Sbornik. Mathematics, Tome 197 (2006) no. 2, pp. 281-302. http://geodesic.mathdoc.fr/item/SM_2006_197_2_a8/