Zero subsets, representation of meromorphic functions, and Nevanlinna characteristics in a~disc
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 197 (2006) no. 2, pp. 259-279
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let  $\Lambda=\{\lambda_k\}$ be a point sequence in the unit disc $\mathbb D$ and
$N_\Lambda(r)$ the Nevanlinna characteristic of the sequence $\Lambda$, $0$. In terms of the Nevanlinna characteristic $N_\Lambda(r)$ one finds estimates for the slowest possible growth of the characteristic $B(r,|f|)=\max\{|f(z)|:|z|=r\}$ as $r\to1-0$ in the class of
holomorphic functions  $f\not\equiv0$ in $\mathbb D$ vanishing on $\Lambda$.
Let $F$ be a meromorphic function in $\mathbb D$. In terms of the Nevanlinna characteristic function $T(r,F)$ of $F$ one finds estimates for the slowest possible growth of the characteristics $B(r,|g|)$ and $B(r,|h|)$ in the class of pairs of holomorphic functions $g$ and $h$ such that $F=g/h$.
Bibliography: 21 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
holomorphic function, unit disk, zero set, meromorphic function, nonuniqueness set, Nevanlinna characteristic, Jensen measure.
                    
                    
                    
                  
                
                
                @article{SM_2006_197_2_a7,
     author = {B. N. Khabibullin},
     title = {Zero subsets, representation of meromorphic functions, and {Nevanlinna} characteristics in a~disc},
     journal = {Sbornik. Mathematics},
     pages = {259--279},
     publisher = {mathdoc},
     volume = {197},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_2_a7/}
}
                      
                      
                    TY - JOUR AU - B. N. Khabibullin TI - Zero subsets, representation of meromorphic functions, and Nevanlinna characteristics in a~disc JO - Sbornik. Mathematics PY - 2006 SP - 259 EP - 279 VL - 197 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2006_197_2_a7/ LA - en ID - SM_2006_197_2_a7 ER -
B. N. Khabibullin. Zero subsets, representation of meromorphic functions, and Nevanlinna characteristics in a~disc. Sbornik. Mathematics, Tome 197 (2006) no. 2, pp. 259-279. http://geodesic.mathdoc.fr/item/SM_2006_197_2_a7/
