Zero subsets, representation of meromorphic functions, and Nevanlinna characteristics in a disc
Sbornik. Mathematics, Tome 197 (2006) no. 2, pp. 259-279 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\Lambda=\{\lambda_k\}$ be a point sequence in the unit disc $\mathbb D$ and $N_\Lambda(r)$ the Nevanlinna characteristic of the sequence $\Lambda$, $0. In terms of the Nevanlinna characteristic $N_\Lambda(r)$ one finds estimates for the slowest possible growth of the characteristic $B(r,|f|)=\max\{|f(z)|:|z|=r\}$ as $r\to1-0$ in the class of holomorphic functions $f\not\equiv0$ in $\mathbb D$ vanishing on $\Lambda$. Let $F$ be a meromorphic function in $\mathbb D$. In terms of the Nevanlinna characteristic function $T(r,F)$ of $F$ one finds estimates for the slowest possible growth of the characteristics $B(r,|g|)$ and $B(r,|h|)$ in the class of pairs of holomorphic functions $g$ and $h$ such that $F=g/h$. Bibliography: 21 titles.
Keywords: holomorphic function, unit disk, zero set, meromorphic function, nonuniqueness set, Nevanlinna characteristic, Jensen measure.
@article{SM_2006_197_2_a7,
     author = {B. N. Khabibullin},
     title = {Zero subsets, representation of meromorphic functions, and {Nevanlinna} characteristics in a~disc},
     journal = {Sbornik. Mathematics},
     pages = {259--279},
     year = {2006},
     volume = {197},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_2_a7/}
}
TY  - JOUR
AU  - B. N. Khabibullin
TI  - Zero subsets, representation of meromorphic functions, and Nevanlinna characteristics in a disc
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 259
EP  - 279
VL  - 197
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_2_a7/
LA  - en
ID  - SM_2006_197_2_a7
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%T Zero subsets, representation of meromorphic functions, and Nevanlinna characteristics in a disc
%J Sbornik. Mathematics
%D 2006
%P 259-279
%V 197
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2006_197_2_a7/
%G en
%F SM_2006_197_2_a7
B. N. Khabibullin. Zero subsets, representation of meromorphic functions, and Nevanlinna characteristics in a disc. Sbornik. Mathematics, Tome 197 (2006) no. 2, pp. 259-279. http://geodesic.mathdoc.fr/item/SM_2006_197_2_a7/

[1] L. Shvarts, Analiz, t. I, Mir, M., 1972

[2] R. Nevanlinna, Odnoznachnye analiticheskie funktsii, Gostekhizdat, M., L., 1941 | MR

[3] U. Kheiman, Meromorfnye funktsii, Mir, M., 1966 | MR

[4] M. Tsuji, Potential theory in modern function theory, Chelsea Publ. Co., New York, 1975 | MR | Zbl

[5] B. N. Khabibullin, “The representation of a meromorphic function as the quotient of entire functions and Paley problem in $\mathbb C^n$: survey of some results”, Mat. Fiz. Anal. Geom., 9:2 (2002), 146–167 | MR | Zbl

[6] B. N. Khabibullin, “Rost tselykh funktsii s zadannymi nulyami i predstavlenie meromorfnykh funktsii”, Matem. zametki, 73:1 (2003), 120–134 | MR | Zbl

[7] F. A. Shamoyan, “Faktorizatsionnaya teorema M. M. Dzhrbashyana i kharakteristika nulei analiticheskikh v kruge funktsii s mazhorantoi konechnogo rosta”, Izv. AN ArmSSR. Ser. matem., 13:5–6 (1978), 405–422 | MR | Zbl

[8] T. J. Ransford, Potential theory in the complex plane, London Math. Soc. Stud. Texts, 28, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[9] U. Kheiman, P. Kennedi, Subgarmonicheskie funktsii, Mir, M., 1980

[10] T. W. Gamelin, Uniform algebras and Jensen measures, London Math. Soc. Lecture Note Ser., 32, Cambridge Univ. Press, Cambridge, 1978 | MR | Zbl

[11] P. Koosis, Leçons sur le théorème de Beurling et Malliavin, CRM, Montreal, QC, 1996 | MR | Zbl

[12] T. J. Ransford, “Jensen measures”, Approximation, complex analysis, and potential theory, Proc. NATO Adv. Stud. Inst. 2000 (Montreal, QC), NATO Sci. Ser. II Math. Phys. Chem., 37, eds. N. U. Arakelyan, P. M. Gauthier, Kluwer Acad. Publ., Dordrecht, 2001, 221–237 | MR | Zbl

[13] B. N. Khabibullin, “Mnozhestva edinstvennosti v prostranstvakh tselykh funktsii odnoi peremennoi”, Izv. AN SSSR. Ser. matem., 55:5 (1991), 1101–1123

[14] B. N. Khabibullin, “Dual approach to certain questions for the weighted spaces of holomorphic functions”, Entire Functions in Modern Analysis, Israel Math. Conf. Proc. (Tel-Aviv, 1997), 15, 2001, 207–219 | MR | Zbl

[15] B. N. Khabibullin, “Teorema o naimenshei mazhorante i ee primeneniya. I. Tselye i meromorfnye funktsii”, Izv. RAN. Ser. matem., 57:1 (1993), 129–146 | Zbl

[16] V. Matsaev, I. F. Ostrovskii, M. Sodin, “Variation on the theme of Marcinkevicz' inequality”, J. Anal. Math., 86 (2002), 289–317 | DOI | MR | Zbl

[17] C. Sundberg, “Measures induced by analytic functions and a problem of Walter Rudin”, J. Amer. Math. Soc., 16:1 (2003), 69–90 | DOI | MR | Zbl

[18] B. N. Khabibullin, “Kriterii (sub-)garmonichnosti i prodolzhenie (sub-)garmonicheskikh funktsii”, Sib. matem. zhurn., 44:4 (2003), 905–925 | MR | Zbl

[19] B. N. Khabibullin, “Dvoistvennoe predstavlenie superlineinykh funktsionalov i ego primeneniya v teorii funktsii. II”, Izv. RAN. Ser. matem., 65:5 (2001), 167–190 | MR | Zbl

[20] T. Y. Chern, “Counting functions for meromorphic functions in the open unit disk”, Complex analysis and its applications (Hong Kong, 1993), Pitman Res. Notes Math. Ser., 305, eds. Ch.-Ch. Yang et al., Longman Sci. Tech., Harlow, 1994, 50–52 | MR | Zbl

[21] A. A. Goldberg, I. V. Ostrovskii, Raspredelenie znachenii meromorfnykh funktsii, Nauka, Fizmatlit, M., 1970 | MR