Discrete symmetries in the generalized Dido problem
Sbornik. Mathematics, Tome 197 (2006) no. 2, pp. 235-257

Voir la notice de l'article provenant de la source Math-Net.Ru

The generalized Dido problem is considered — a model of the nilpotent sub-Riemannian problem with the growth vector $(2,\,3,\,5)$. The group of discrete symmetries in this problem is constructed as an extension of the reflection group of the standard mathematical pendulum. The action of these symmetries in the inverse image and image of the exponential map is studied. Bibliography: 16 titles.
@article{SM_2006_197_2_a6,
     author = {Yu. L. Sachkov},
     title = {Discrete symmetries in the generalized {Dido} problem},
     journal = {Sbornik. Mathematics},
     pages = {235--257},
     publisher = {mathdoc},
     volume = {197},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_2_a6/}
}
TY  - JOUR
AU  - Yu. L. Sachkov
TI  - Discrete symmetries in the generalized Dido problem
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 235
EP  - 257
VL  - 197
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_2_a6/
LA  - en
ID  - SM_2006_197_2_a6
ER  - 
%0 Journal Article
%A Yu. L. Sachkov
%T Discrete symmetries in the generalized Dido problem
%J Sbornik. Mathematics
%D 2006
%P 235-257
%V 197
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2006_197_2_a6/
%G en
%F SM_2006_197_2_a6
Yu. L. Sachkov. Discrete symmetries in the generalized Dido problem. Sbornik. Mathematics, Tome 197 (2006) no. 2, pp. 235-257. http://geodesic.mathdoc.fr/item/SM_2006_197_2_a6/