Discrete symmetries in the generalized Dido problem
Sbornik. Mathematics, Tome 197 (2006) no. 2, pp. 235-257 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The generalized Dido problem is considered — a model of the nilpotent sub-Riemannian problem with the growth vector $(2,\,3,\,5)$. The group of discrete symmetries in this problem is constructed as an extension of the reflection group of the standard mathematical pendulum. The action of these symmetries in the inverse image and image of the exponential map is studied. Bibliography: 16 titles.
@article{SM_2006_197_2_a6,
     author = {Yu. L. Sachkov},
     title = {Discrete symmetries in the generalized {Dido} problem},
     journal = {Sbornik. Mathematics},
     pages = {235--257},
     year = {2006},
     volume = {197},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_2_a6/}
}
TY  - JOUR
AU  - Yu. L. Sachkov
TI  - Discrete symmetries in the generalized Dido problem
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 235
EP  - 257
VL  - 197
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_2_a6/
LA  - en
ID  - SM_2006_197_2_a6
ER  - 
%0 Journal Article
%A Yu. L. Sachkov
%T Discrete symmetries in the generalized Dido problem
%J Sbornik. Mathematics
%D 2006
%P 235-257
%V 197
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2006_197_2_a6/
%G en
%F SM_2006_197_2_a6
Yu. L. Sachkov. Discrete symmetries in the generalized Dido problem. Sbornik. Mathematics, Tome 197 (2006) no. 2, pp. 235-257. http://geodesic.mathdoc.fr/item/SM_2006_197_2_a6/

[1] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimalnoe upravlenie, Nauka, M., 1981 | MR

[2] Yu. L. Sachkov, “Eksponentsialnoe otobrazhenie v obobschennoi zadache Didony”, Matem. sb., 194:9 (2003), 63–90 | MR | Zbl

[3] A. A. Agrachev, A. V. Sarychev, “Filtratsiya algebry Li vektornykh polei i nilpotentnaya approksimatsiya upravlyaemykh sistem”, Dokl. AN SSSR, 295:4 (1987), 777–781 | MR | Zbl

[4] A. Bellaiche, “The tangent space in sub-Riemannian geometry”, Sub-Riemannian geometry, Progr. Math., 144, eds. A. Bellaiche and J.-J. Risler, Birkhäuser, Basel, 1996, 1–78 | MR | Zbl

[5] A. A. Agrachev, Yu. L. Sachkov, “An intrinsic approach to the control of rolling bodies”, Proceedings of the 38-th IEEE Conference on Decision and Control (Phoenix, Arizona, USA, December 7–10, 1999), 1, IEEE, Piscataway, NJ, 1999, 431–435

[6] Yu. L. Sachkov, “Symmetries of flat rank two distributions and sub-Riemannian structures”, Trans. Amer. Math. Soc., 356:2 (2004), 457–494 | DOI | MR | Zbl

[7] A. A. Agrachev, Yu. L. Sachkov, Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2004 | Zbl

[8] V. Jurdjevic, Geometric control theory, Cambridge Stud. Adv. Math., 52, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl

[9] Yu. L. Sachkov, “Mnozhestvo Maksvella v obobschennoi zadache Didony”, Matem. sb., 197:4 (2006), 123–150 | MR

[10] Yu. L. Sachkov, “Polnoe opisanie stratov Maksvella v obobschennoi zadache Didony”, Matem. sb., 197:6 (2006), 111–160

[11] S. Wolfram, Mathematica: a system for doing mathematics by computer, Addison-Wesley, Reading, MA, 1992

[12] F. Griffits, Vneshnie differentsialnye sistemy i variatsionnoe ischislenie, Mir, M., 1986 | MR

[13] K. G. Ya. Yakobi, Lektsii po dinamike, URSS, M., 2004

[14] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Nauka, Fizmatlit, M., 1970 | MR | Zbl

[15] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, URSS, M., 2002

[16] A. M. Vershik, V. Ya. Gershkovich, “Negolonomnye dinamicheskie sistemy. Geometriya raspredelenii i variatsionnye zadachi”, Dinamicheskie sistemy – 7, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 16, VINITI, M., 1987, 5–85 | MR