@article{SM_2006_197_2_a5,
author = {V. G. Ryabykh},
title = {Approximation of non-analytic functions by analytic ones},
journal = {Sbornik. Mathematics},
pages = {225--233},
year = {2006},
volume = {197},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_2_a5/}
}
V. G. Ryabykh. Approximation of non-analytic functions by analytic ones. Sbornik. Mathematics, Tome 197 (2006) no. 2, pp. 225-233. http://geodesic.mathdoc.fr/item/SM_2006_197_2_a5/
[1] L. Carleson, S. Jacobs, “Best approximation by analytic functions”, Ark. Mat., 10 (1972), 219–229 | DOI | MR | Zbl
[2] Dzh. Garnett, Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR
[3] N. Papadimitrakis, “Best uniform approximations by bounded analytic function”, Proc. Amer. Math. Soc., 103:3 (1988), 882–886 | DOI | MR | Zbl
[4] M. M. Dei, Normirovannye lineinye prostranstva, IL, M., 1961
[5] S. Ya. Khavinson, “O nekotorykh ekstremalnykh problemakh teorii analiticheskikh funktsii”, Uch. zapiski MGU. Matem., 148 (1951), 133–143 | MR | Zbl
[6] P. L. Duren, B. W. Romberg, A. L. Shields, “Linear functionals on $H_p$ space with $0
1$”, J. Reine Angew. Math., 238 (1969), 32–60 | MR | Zbl[7] Yu. A. Brudnyi, I. E. Gopengauz, “Obobschenie odnoi teoremy Khardi i Littlvuda”, Matem. sb., 52(94):3 (1960), 891–894 | MR | Zbl
[8] P. Kusis, Vvedenie v teoriyu prostranstv $H^p$ s prilozheniem dokazatelstva Volffa teoremy o korone, Mir, M., 1984 | MR
[9] L. V. Kantorovich, G. G. Akilov, Funktsionalnyi analiz v normirovannykh prostranstvakh, Fizmatgiz, M., 1959 | MR
[10] N. A. Shirokov, “O module granichnykh znachenii analiticheskikh funktsii klassa $\Lambda_\omega^n$”, Zapiski nauch. sem. LOMI, 113, 1981, 258–260 | MR | Zbl
[11] N. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR
[12] V. G. Ryabykh, Priblizhenie analiticheskikh funktsii neanaliticheskimi, Dep. v VINITI, No 3943-V-98, 1998