Weighted estimates for tangential boundary behaviour
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 197 (2006) no. 2, pp. 193-211
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $(X,\mu,d)$ be a space of homogeneous type (here $d$ is a quasimetric and $\mu$ a measure). A function $\varepsilon$ of modulus of continuity kind gives rise to approach regions $\Gamma_{\varepsilon}(x)$ at the boundary of $\mathbf{X}$, $\mathbf{X}=X\times[0,1)$, where for a point $x\in X$,
$$
\Gamma_{\varepsilon}(x)=\{(y,t)\in\mathbf{X}:d(x,y)\varepsilon(1-t)\}.
$$
These are ‘tangential’ regions if $\lim_{t\to+0}\varepsilon(t)/t=\infty$.
Weighted $L^p$-estimates are proved for the corresponding maximal functions of integral operators. Applications of these estimates to potentials in $\mathbb{R}^n$ and to multipliers of homogeneous expansions of holomorphic functions in the Hardy classes in the unit
ball of $\mathbb{C}^n$ are presented.
Bibliography: 20 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
space of homogeneous type, tangential boundary behaviour, weighted inequalities.
                    
                    
                    
                  
                
                
                @article{SM_2006_197_2_a3,
     author = {V. G. Krotov and L. V. Smovzh},
     title = {Weighted estimates for tangential boundary behaviour},
     journal = {Sbornik. Mathematics},
     pages = {193--211},
     publisher = {mathdoc},
     volume = {197},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_2_a3/}
}
                      
                      
                    V. G. Krotov; L. V. Smovzh. Weighted estimates for tangential boundary behaviour. Sbornik. Mathematics, Tome 197 (2006) no. 2, pp. 193-211. http://geodesic.mathdoc.fr/item/SM_2006_197_2_a3/
