Weighted estimates for tangential boundary behaviour
Sbornik. Mathematics, Tome 197 (2006) no. 2, pp. 193-211

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(X,\mu,d)$ be a space of homogeneous type (here $d$ is a quasimetric and $\mu$ a measure). A function $\varepsilon$ of modulus of continuity kind gives rise to approach regions $\Gamma_{\varepsilon}(x)$ at the boundary of $\mathbf{X}$, $\mathbf{X}=X\times[0,1)$, where for a point $x\in X$, $$ \Gamma_{\varepsilon}(x)=\{(y,t)\in\mathbf{X}:d(x,y)\varepsilon(1-t)\}. $$ These are ‘tangential’ regions if $\lim_{t\to+0}\varepsilon(t)/t=\infty$. Weighted $L^p$-estimates are proved for the corresponding maximal functions of integral operators. Applications of these estimates to potentials in $\mathbb{R}^n$ and to multipliers of homogeneous expansions of holomorphic functions in the Hardy classes in the unit ball of $\mathbb{C}^n$ are presented. Bibliography: 20 titles.
Keywords: space of homogeneous type, tangential boundary behaviour, weighted inequalities.
@article{SM_2006_197_2_a3,
     author = {V. G. Krotov and L. V. Smovzh},
     title = {Weighted estimates for tangential boundary behaviour},
     journal = {Sbornik. Mathematics},
     pages = {193--211},
     publisher = {mathdoc},
     volume = {197},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_2_a3/}
}
TY  - JOUR
AU  - V. G. Krotov
AU  - L. V. Smovzh
TI  - Weighted estimates for tangential boundary behaviour
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 193
EP  - 211
VL  - 197
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_2_a3/
LA  - en
ID  - SM_2006_197_2_a3
ER  - 
%0 Journal Article
%A V. G. Krotov
%A L. V. Smovzh
%T Weighted estimates for tangential boundary behaviour
%J Sbornik. Mathematics
%D 2006
%P 193-211
%V 197
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2006_197_2_a3/
%G en
%F SM_2006_197_2_a3
V. G. Krotov; L. V. Smovzh. Weighted estimates for tangential boundary behaviour. Sbornik. Mathematics, Tome 197 (2006) no. 2, pp. 193-211. http://geodesic.mathdoc.fr/item/SM_2006_197_2_a3/