Quasi-Weyl asymptotics of the spectrum in the Dirichlet problem
Sbornik. Mathematics, Tome 197 (2006) no. 2, pp. 153-171 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A spectral problem of Dirichlet type \begin{gather*} \sum_\alpha D^\alpha a_\alpha D^\alpha u=\mu^{-1}pu, \\ a_\alpha(x)\geqslant c_0>0, \qquad p(x)\in\mathbb R, \qquad x\in\Omega\subset\mathbb R^m, \end{gather*} where $\Omega$ is a bounded set, is considered. All the natural generalizations of the classical Weyl's spectral asymptotic formula are described. The main property of these generalizations is as follows: the leading term of the asymptotic formula is an additive function of the set $\Omega$. Bibliography: 6 titles.
@article{SM_2006_197_2_a1,
     author = {A. S. Andreev},
     title = {Quasi-Weyl asymptotics of the spectrum in the {Dirichlet} problem},
     journal = {Sbornik. Mathematics},
     pages = {153--171},
     year = {2006},
     volume = {197},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_2_a1/}
}
TY  - JOUR
AU  - A. S. Andreev
TI  - Quasi-Weyl asymptotics of the spectrum in the Dirichlet problem
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 153
EP  - 171
VL  - 197
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_2_a1/
LA  - en
ID  - SM_2006_197_2_a1
ER  - 
%0 Journal Article
%A A. S. Andreev
%T Quasi-Weyl asymptotics of the spectrum in the Dirichlet problem
%J Sbornik. Mathematics
%D 2006
%P 153-171
%V 197
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2006_197_2_a1/
%G en
%F SM_2006_197_2_a1
A. S. Andreev. Quasi-Weyl asymptotics of the spectrum in the Dirichlet problem. Sbornik. Mathematics, Tome 197 (2006) no. 2, pp. 153-171. http://geodesic.mathdoc.fr/item/SM_2006_197_2_a1/

[1] V. N. Tulovskii, “Raspredelenie sobstvennykh znachenii dlya differentsialnykh operatorov s postoyannymi koeffitsientami”, Funkts. analiz, 5:3 (1971), 85–90 | MR | Zbl

[2] V. N. Tulovskii, “Asimptoticheskoe raspredelenie sobstvennykh znachenii differentsialnykh uravnenii”, Matem. sb., 89(131):2 (1972), 191–206 | MR | Zbl

[3] A. S. Andreev, “Asimptotika spektra zadachi Dirikhle dlya differentsialnykh operatorov s postoyannymi koeffitsientami”, Funkts. analiz i ego prilozh., 17:3 (1983), 61–62 | MR | Zbl

[4] A. S. Andreev, “O formule Veilya spektralnoi asimptotiki dlya neellipticheskikh operatorov zadachi Dirikhle”, Problemy matematicheskogo analiza, Mezhvuzovsk. sborn., no. 9, Izd-vo LGU, L., 1984, 3–18 | MR

[5] A. I. Karol, M. Z. Solomyak, “Ob odnom klasse differentsialnykh operatorov s nestandartnym povedeniem spektra zadachi Dirikhle”, Matem. zametki, 31:5 (1982), 747–751 | MR | Zbl

[6] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo LGU, L., 1980 | MR