Quasi-Weyl asymptotics of the  spectrum in the Dirichlet problem
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 197 (2006) no. 2, pp. 153-171
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A spectral problem of Dirichlet type
\begin{gather*}
\sum_\alpha D^\alpha a_\alpha D^\alpha u=\mu^{-1}pu,
\\
a_\alpha(x)\geqslant c_0>0, \qquad p(x)\in\mathbb R, \qquad
x\in\Omega\subset\mathbb R^m,
\end{gather*}
where $\Omega$ is a bounded set, is considered.
All the natural generalizations of the classical Weyl's spectral  asymptotic
formula are described. The main property of these generalizations is as follows: the
leading term of the asymptotic formula is an additive function of  the set $\Omega$.
Bibliography: 6 titles.
			
            
            
            
          
        
      @article{SM_2006_197_2_a1,
     author = {A. S. Andreev},
     title = {Quasi-Weyl asymptotics of the  spectrum in the {Dirichlet} problem},
     journal = {Sbornik. Mathematics},
     pages = {153--171},
     publisher = {mathdoc},
     volume = {197},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_2_a1/}
}
                      
                      
                    A. S. Andreev. Quasi-Weyl asymptotics of the spectrum in the Dirichlet problem. Sbornik. Mathematics, Tome 197 (2006) no. 2, pp. 153-171. http://geodesic.mathdoc.fr/item/SM_2006_197_2_a1/
