Families of submanifolds of constant negative curvature of many-dimensional Euclidean space
Sbornik. Mathematics, Tome 197 (2006) no. 2, pp. 139-152

Voir la notice de l'article provenant de la source Math-Net.Ru

A family of $n$-dimensional submanifolds of constant negative curvature $K_0$ of the $(2n-1)$-dimensional Euclidean space $E^{2n-1}$ is considered and included in an orthogonal system of coordinates. For $n=2$ such a system of coordinates was considered by Bianchi. The concept of a many-dimensional Bianchi system of coordinates is introduced. The following result is central in the paper. Theorem 1. {\it Assume that a ball of radius $\rho$ in the Euclidean space $E^{2n-1}$ carries a regular Bianchi system of coordinates such that $K_0\leqslant -1$. Then} $$ \rho\leqslant\frac\pi4\,. $$ Bibliography: 12 titles.
@article{SM_2006_197_2_a0,
     author = {Yu. A. Aminov},
     title = {Families of submanifolds of constant negative curvature of  many-dimensional {Euclidean} space},
     journal = {Sbornik. Mathematics},
     pages = {139--152},
     publisher = {mathdoc},
     volume = {197},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_2_a0/}
}
TY  - JOUR
AU  - Yu. A. Aminov
TI  - Families of submanifolds of constant negative curvature of  many-dimensional Euclidean space
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 139
EP  - 152
VL  - 197
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_2_a0/
LA  - en
ID  - SM_2006_197_2_a0
ER  - 
%0 Journal Article
%A Yu. A. Aminov
%T Families of submanifolds of constant negative curvature of  many-dimensional Euclidean space
%J Sbornik. Mathematics
%D 2006
%P 139-152
%V 197
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2006_197_2_a0/
%G en
%F SM_2006_197_2_a0
Yu. A. Aminov. Families of submanifolds of constant negative curvature of  many-dimensional Euclidean space. Sbornik. Mathematics, Tome 197 (2006) no. 2, pp. 139-152. http://geodesic.mathdoc.fr/item/SM_2006_197_2_a0/