@article{SM_2006_197_2_a0,
author = {Yu. A. Aminov},
title = {Families of submanifolds of constant negative curvature of many-dimensional {Euclidean} space},
journal = {Sbornik. Mathematics},
pages = {139--152},
year = {2006},
volume = {197},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_2_a0/}
}
Yu. A. Aminov. Families of submanifolds of constant negative curvature of many-dimensional Euclidean space. Sbornik. Mathematics, Tome 197 (2006) no. 2, pp. 139-152. http://geodesic.mathdoc.fr/item/SM_2006_197_2_a0/
[1] J. D. Moore, “Isometric immersions of space forms in space forms”, Pacific J. Math., 40:1 (1972), 157–167 | MR
[2] K. Tenenblat, C. L. Terng, “Bäcklund's theorem for $n$-dimensional submanifolds of $R^{2n-1}$”, Ann. of Math. (2), 111 (1980), 477–490 | DOI | MR | Zbl
[3] Xavier F., “A nonimmersion theorem for hyperbolic manifolds”, Comment. Math. Helv., 60 (1985), 280–283 | DOI | MR | Zbl
[4] Yu. A. Aminov, “O pogruzhenii oblastei $n$-mernogo prostranstva Lobachevskogo v $(2n-1)$-mernoe evklidovo prostranstvo”, Dokl. AN SSSR, 236:3 (1977), 521–524 | MR | Zbl
[5] Yu. A. Aminov, Geometriya podmnogoobrazii, Naukova dumka, Kiev, 2002 | Zbl
[6] G. Darboux, Leçons sur les systèmes orthogonaux et les coordonnées curvilignes, Gauthier-Villars, Paris, 1910 | Zbl
[7] V. E. Zakharov, “Description of the $n$-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type, I: Integration of the Lamé equations”, Duke Math. J., 94:1 (1998), 103–139 | DOI | MR | Zbl
[8] I. M. Krichever, “Algebro-geometricheskie $n$-ortogonalnye krivolineinye sistemy koordinat i resheniya uravnenii assotsiativnosti”, Funkts. analiz i ego prilozh., 31:1 (1997), 32–50 | MR | Zbl
[9] V. Dryuma, “O geometrii ODU vtorogo poryadka i ee prilozheniyakh”, Trudy Vsesoyuznoi konferentsii “Nelineinye yavleniya” (“Nonlinear Phenomena”), ed. K. V. Frolov, Nauka, M., 1991, 41–47
[10] A. R. Forsyth, Lectures on the differential geometry of curves and surfaces, Cambridge Univ. Press, Cambridge, 1912 | Zbl
[11] L. Bianchi, Vorlesungen über Differentialgeometrie, Druck und Verlag von B. G. Teubner, Leipzig, 1910
[12] L. P. Eizenkhart, Rimanova geometriya, IL, M., 1948