Families of submanifolds of constant negative curvature of many-dimensional Euclidean space
Sbornik. Mathematics, Tome 197 (2006) no. 2, pp. 139-152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A family of $n$-dimensional submanifolds of constant negative curvature $K_0$ of the $(2n-1)$-dimensional Euclidean space $E^{2n-1}$ is considered and included in an orthogonal system of coordinates. For $n=2$ such a system of coordinates was considered by Bianchi. The concept of a many-dimensional Bianchi system of coordinates is introduced. The following result is central in the paper. Theorem 1. {\it Assume that a ball of radius $\rho$ in the Euclidean space $E^{2n-1}$ carries a regular Bianchi system of coordinates such that $K_0\leqslant -1$. Then} $$ \rho\leqslant\frac\pi4\,. $$ Bibliography: 12 titles.
@article{SM_2006_197_2_a0,
     author = {Yu. A. Aminov},
     title = {Families of submanifolds of constant negative curvature of many-dimensional {Euclidean} space},
     journal = {Sbornik. Mathematics},
     pages = {139--152},
     year = {2006},
     volume = {197},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_2_a0/}
}
TY  - JOUR
AU  - Yu. A. Aminov
TI  - Families of submanifolds of constant negative curvature of many-dimensional Euclidean space
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 139
EP  - 152
VL  - 197
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_2_a0/
LA  - en
ID  - SM_2006_197_2_a0
ER  - 
%0 Journal Article
%A Yu. A. Aminov
%T Families of submanifolds of constant negative curvature of many-dimensional Euclidean space
%J Sbornik. Mathematics
%D 2006
%P 139-152
%V 197
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2006_197_2_a0/
%G en
%F SM_2006_197_2_a0
Yu. A. Aminov. Families of submanifolds of constant negative curvature of many-dimensional Euclidean space. Sbornik. Mathematics, Tome 197 (2006) no. 2, pp. 139-152. http://geodesic.mathdoc.fr/item/SM_2006_197_2_a0/

[1] J. D. Moore, “Isometric immersions of space forms in space forms”, Pacific J. Math., 40:1 (1972), 157–167 | MR

[2] K. Tenenblat, C. L. Terng, “Bäcklund's theorem for $n$-dimensional submanifolds of $R^{2n-1}$”, Ann. of Math. (2), 111 (1980), 477–490 | DOI | MR | Zbl

[3] Xavier F., “A nonimmersion theorem for hyperbolic manifolds”, Comment. Math. Helv., 60 (1985), 280–283 | DOI | MR | Zbl

[4] Yu. A. Aminov, “O pogruzhenii oblastei $n$-mernogo prostranstva Lobachevskogo v $(2n-1)$-mernoe evklidovo prostranstvo”, Dokl. AN SSSR, 236:3 (1977), 521–524 | MR | Zbl

[5] Yu. A. Aminov, Geometriya podmnogoobrazii, Naukova dumka, Kiev, 2002 | Zbl

[6] G. Darboux, Leçons sur les systèmes orthogonaux et les coordonnées curvilignes, Gauthier-Villars, Paris, 1910 | Zbl

[7] V. E. Zakharov, “Description of the $n$-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type, I: Integration of the Lamé equations”, Duke Math. J., 94:1 (1998), 103–139 | DOI | MR | Zbl

[8] I. M. Krichever, “Algebro-geometricheskie $n$-ortogonalnye krivolineinye sistemy koordinat i resheniya uravnenii assotsiativnosti”, Funkts. analiz i ego prilozh., 31:1 (1997), 32–50 | MR | Zbl

[9] V. Dryuma, “O geometrii ODU vtorogo poryadka i ee prilozheniyakh”, Trudy Vsesoyuznoi konferentsii “Nelineinye yavleniya” (“Nonlinear Phenomena”), ed. K. V. Frolov, Nauka, M., 1991, 41–47

[10] A. R. Forsyth, Lectures on the differential geometry of curves and surfaces, Cambridge Univ. Press, Cambridge, 1912 | Zbl

[11] L. Bianchi, Vorlesungen über Differentialgeometrie, Druck und Verlag von B. G. Teubner, Leipzig, 1910

[12] L. P. Eizenkhart, Rimanova geometriya, IL, M., 1948