On the rationality of non-singular threefolds with a pencil of Del~Pezzo surfaces of degree~4
Sbornik. Mathematics, Tome 197 (2006) no. 1, pp. 127-137

Voir la notice de l'article provenant de la source Math-Net.Ru

A criterion for the non-singularity of a complete intersection of two fibrewise quadrics in $\mathbb P_{\mathbb P^1}(\mathscr O(d_1)\oplus\dots\oplus\mathscr O(d_5))$ is obtained. The following addition to Alexeev's theorem on the rationality of standard Del Pezzo fibrations of degree 4 over $\mathbb P^1$ is deduced as a consequence: each fibration of this kind with topological Euler characteristic $\chi(X)=-4$ is proved to be rational. Bibliography: 10 titles.
@article{SM_2006_197_1_a6,
     author = {K. A. Shramov},
     title = {On the rationality of non-singular threefolds with a pencil of {Del~Pezzo} surfaces of degree~4},
     journal = {Sbornik. Mathematics},
     pages = {127--137},
     publisher = {mathdoc},
     volume = {197},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_1_a6/}
}
TY  - JOUR
AU  - K. A. Shramov
TI  - On the rationality of non-singular threefolds with a pencil of Del~Pezzo surfaces of degree~4
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 127
EP  - 137
VL  - 197
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_1_a6/
LA  - en
ID  - SM_2006_197_1_a6
ER  - 
%0 Journal Article
%A K. A. Shramov
%T On the rationality of non-singular threefolds with a pencil of Del~Pezzo surfaces of degree~4
%J Sbornik. Mathematics
%D 2006
%P 127-137
%V 197
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2006_197_1_a6/
%G en
%F SM_2006_197_1_a6
K. A. Shramov. On the rationality of non-singular threefolds with a pencil of Del~Pezzo surfaces of degree~4. Sbornik. Mathematics, Tome 197 (2006) no. 1, pp. 127-137. http://geodesic.mathdoc.fr/item/SM_2006_197_1_a6/