On the rationality of non-singular threefolds with a pencil of Del~Pezzo surfaces of degree~4
Sbornik. Mathematics, Tome 197 (2006) no. 1, pp. 127-137
Voir la notice de l'article provenant de la source Math-Net.Ru
A criterion for the non-singularity of a complete intersection of two fibrewise quadrics in $\mathbb P_{\mathbb P^1}(\mathscr O(d_1)\oplus\dots\oplus\mathscr O(d_5))$ is obtained.
The following addition to Alexeev's theorem on the rationality of standard Del Pezzo fibrations of degree 4 over $\mathbb P^1$ is deduced as a consequence: each fibration of this kind with
topological Euler characteristic $\chi(X)=-4$ is proved to be rational.
Bibliography: 10 titles.
@article{SM_2006_197_1_a6,
author = {K. A. Shramov},
title = {On the rationality of non-singular threefolds with a pencil of {Del~Pezzo} surfaces of degree~4},
journal = {Sbornik. Mathematics},
pages = {127--137},
publisher = {mathdoc},
volume = {197},
number = {1},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_1_a6/}
}
TY - JOUR AU - K. A. Shramov TI - On the rationality of non-singular threefolds with a pencil of Del~Pezzo surfaces of degree~4 JO - Sbornik. Mathematics PY - 2006 SP - 127 EP - 137 VL - 197 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2006_197_1_a6/ LA - en ID - SM_2006_197_1_a6 ER -
K. A. Shramov. On the rationality of non-singular threefolds with a pencil of Del~Pezzo surfaces of degree~4. Sbornik. Mathematics, Tome 197 (2006) no. 1, pp. 127-137. http://geodesic.mathdoc.fr/item/SM_2006_197_1_a6/