Embedding lattice actions in flows with multidimensional time
Sbornik. Mathematics, Tome 197 (2006) no. 1, pp. 95-126 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The genericity of the embeddability of lattice actions in flows with multidimensional time is studied. In particular, questions of de la Rue and de Sam Lazaro on the genericity of the embeddability of an action of a 2-lattice in a flow and the embeddability of a transformation in injective flow actions with multidimensional time are answered. It is also shown that a generic transformation has a set of roots of continuum cardinality in an arbitrary prescribed massive set. Bibliography: 15 titles.
@article{SM_2006_197_1_a5,
     author = {S. V. Tikhonov},
     title = {Embedding lattice actions in flows with multidimensional time},
     journal = {Sbornik. Mathematics},
     pages = {95--126},
     year = {2006},
     volume = {197},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_1_a5/}
}
TY  - JOUR
AU  - S. V. Tikhonov
TI  - Embedding lattice actions in flows with multidimensional time
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 95
EP  - 126
VL  - 197
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_1_a5/
LA  - en
ID  - SM_2006_197_1_a5
ER  - 
%0 Journal Article
%A S. V. Tikhonov
%T Embedding lattice actions in flows with multidimensional time
%J Sbornik. Mathematics
%D 2006
%P 95-126
%V 197
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2006_197_1_a5/
%G en
%F SM_2006_197_1_a5
S. V. Tikhonov. Embedding lattice actions in flows with multidimensional time. Sbornik. Mathematics, Tome 197 (2006) no. 1, pp. 95-126. http://geodesic.mathdoc.fr/item/SM_2006_197_1_a5/

[1] P. R. Khalmosh, Lektsii po ergodicheskoi teorii, IL, M., 1959

[2] J. L. F. King, “The generic transformation has roots of all orders”, Colloq. Math., 84/85:2 (2000), 521–547 | MR | Zbl

[3] E. Glasner, J. L. King, “A zero-one law for dynamical properties”, Contemp. Math., 215 (1998), 231–242 | MR | Zbl

[4] A. M. Stepin, Doklad na konferentsii “Lomonosovskie chteniya”, MGU, aprel, 2000 | Zbl

[5] O. N. Ageev, “Tipichnyi avtomorfizm prostranstva Lebega sopryazhen s $G$-rasshireniem dlya lyuboi konechnoi abelevoi gruppy $G$”, Dokl. RAN, 374:4 (2000), 439–442 | MR | Zbl

[6] O. N. Ageev, “O tipichnosti nekotorykh neasimptoticheskikh dinamicheskikh svoistv”, UMN, 58:1 (2003), 177–178 | MR | Zbl

[7] T. de la Rue, J. Lasaro, “Une transformation générique peut être insérée dans un flot”, Ann. Henri Poincaré, 39:1 (2003), 121–134 | MR | Zbl

[8] A. M. Stepin, A. M. Eremenko, “Tipichnoe sokhranyayuschee meru preobrazovanie imeet obshirnyi tsentralizator”, Dokl. RAN, 394:6 (2004), 739–742 | MR | Zbl

[9] A. M. Stepin, A. M. Eremenko, “Needinstvennost vklyucheniya v potok i obshirnost tsentralizatora dlya tipichnogo sokhranyayuschego meru preobrazovaniya”, Matem. sb., 195:12 (2004), 95–108 | MR | Zbl

[10] S. V. Tikhonov, “Tipichnoe deistvie gruppy $\mathbb{Z}^d$ vkladyvaetsya v deistvie gruppy $\mathbb{R}^d$”, Dokl. RAN, 391:1 (2003), 26–28 | MR | Zbl

[11] J. L. King, “The commutant in the weak closure of the powers, for rank-1 transformations”, Ergodic Theory Dynam. Systems, 6 (1986), 363–384 | DOI | MR | Zbl

[12] I. Kornfeld, Ya. Sinai, S. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980 | MR | Zbl

[13] S. V. Tikhonov, Tipichnye svoistva abelevykh grupp preobrazovanii i spektralnaya diz'yunktnost, Dis. ... kand. fiz.-matem. nauk, MGU, M., 2004

[14] K. Kuratovskii, Topologiya, t. 1, Mir, M., 1966 | MR

[15] Y. Katznelson, B. Weiss, “Commuting measure preserving transformations”, Israel J. Math., 12 (1972), 16–173 | MR