Asymptotic behaviour of a special solution of Abel's equation relating to a cusp catastrophe
Sbornik. Mathematics, Tome 197 (2006) no. 1, pp. 53-67
Cet article a éte moissonné depuis la source Math-Net.Ru
A special solution of Abel's ordinary differential equation of the first kind $u'_{x}+u^3-tu-x=0$ is considered, which describes the behaviour of a broad spectrum of solutions of partial differential equations with a small parameter in the neighbourhood of cusp points of their slowly varying equilibrium positions. The existence of this special solution is demonstrated; an asymptotic formula for it as $|x|\to\infty$, $t\to-\infty$ is constructed and substantiated. Bibliography: 4 titles.
Keywords:
asymptotics, small parameter
Mots-clés : singular perturbations, cusp catastrophe.
Mots-clés : singular perturbations, cusp catastrophe.
@article{SM_2006_197_1_a3,
author = {A. M. Il'in and B. I. Suleimanov},
title = {Asymptotic behaviour of a special solution of {Abel's} equation relating to a cusp catastrophe},
journal = {Sbornik. Mathematics},
pages = {53--67},
year = {2006},
volume = {197},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_1_a3/}
}
TY - JOUR AU - A. M. Il'in AU - B. I. Suleimanov TI - Asymptotic behaviour of a special solution of Abel's equation relating to a cusp catastrophe JO - Sbornik. Mathematics PY - 2006 SP - 53 EP - 67 VL - 197 IS - 1 UR - http://geodesic.mathdoc.fr/item/SM_2006_197_1_a3/ LA - en ID - SM_2006_197_1_a3 ER -
A. M. Il'in; B. I. Suleimanov. Asymptotic behaviour of a special solution of Abel's equation relating to a cusp catastrophe. Sbornik. Mathematics, Tome 197 (2006) no. 1, pp. 53-67. http://geodesic.mathdoc.fr/item/SM_2006_197_1_a3/
[1] A. M. Ilin, B. I. Suleimanov, “O dvukh spetsialnykh funktsiyakh, svyazannykh s osobennostyami tipa sborki”, Dokl. RAN, 387:2 (2002), 156–158 | MR
[2] V. I. Arnold, Teoriya katastrof, Nauka, M., 1980 | MR
[3] A. M. Ilin, B. I. Suleimanov, “Zarozhdenie kontrastnykh struktur tipa stupenki, svyazannoe s katastrofoi sborki”, Matem. sb., 195:12 (2004), 27–46 | MR
[4] S. A. Chaplygin, Novyi metod priblizhennogo integrirovaniya differentsialnykh uravnenii, Gostekhizdat, M.–L., 1950