Geometry of operator cross ratio
Sbornik. Mathematics, Tome 197 (2006) no. 1, pp. 37-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The operator cross ratio, which is meaningful, in particular, for the infinite-dimensional Sato Grassmannian is defined and investigated. Its homological interpretation is presented. A matrix and operator analogue of the Schwartzian differential operator is introduced and its relation to linear Hamiltonian systems and Riccati's equation is established. The aim of these constructions is application to the KP-hierarchy (the Kadomtsev–Petviashvili hierarchy). Bibliography: 12 titles.
@article{SM_2006_197_1_a2,
     author = {M. I. Zelikin},
     title = {Geometry of operator cross ratio},
     journal = {Sbornik. Mathematics},
     pages = {37--51},
     year = {2006},
     volume = {197},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_1_a2/}
}
TY  - JOUR
AU  - M. I. Zelikin
TI  - Geometry of operator cross ratio
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 37
EP  - 51
VL  - 197
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_1_a2/
LA  - en
ID  - SM_2006_197_1_a2
ER  - 
%0 Journal Article
%A M. I. Zelikin
%T Geometry of operator cross ratio
%J Sbornik. Mathematics
%D 2006
%P 37-51
%V 197
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2006_197_1_a2/
%G en
%F SM_2006_197_1_a2
M. I. Zelikin. Geometry of operator cross ratio. Sbornik. Mathematics, Tome 197 (2006) no. 1, pp. 37-51. http://geodesic.mathdoc.fr/item/SM_2006_197_1_a2/

[1] M. Sato, Y. Sato, “Soliton equations as dynamical systems on infinite dimensional Grassmann manifold”, Lecture Notes Numer. Appl. Anal., 5 (1982), 259–271 | MR

[2] G. Segal, G. Wilson, “Loop groups and equations of the KdV type”, Publ. Math. IHES, 80:61 (1985), 301–342 | MR

[3] A. N. Parshin, “Integrable systems and local fields”, Comm. Algebra, 29:9 (2001), 4157–4181 | DOI | MR | Zbl

[4] M. I. Zelikin, Odnorodnye prostranstva i uravnenie Rikkati v variatsionnom ischislenii, Faktorial, M., 1998 | Zbl

[5] M. Mulase, “Solvability of the super KP equations and a generalization of the Birkhoff decomposition”, Invent. Math., 92 (1988), 1–46 | DOI | MR | Zbl

[6] A. N. Parshin, “O koltse formalnykh psevdodifferentsialnykh operatorov”, Trudy MIAN, 224, 1999, 291–305 | MR | Zbl

[7] M. I. Zelikin, “$\zeta$-Funktsiya dvoinogo otnosheniya na grassmaniane Sato kak integralnyi invariant ierarkhii Kadomtseva–Petviashvili”, Dokl. RAN, 389:2 (2003), 159–163 | MR | Zbl

[8] L. J. Mason, M. A. Singer, N. M. J. Woodhouse, “Tau functions and the twistor theory of integrable systems”, J. Geom. Phys., 32 (2000), 397–430 | DOI | MR | Zbl

[9] M. Lauzon, S. Treil, “Common complements of two subspaces of a Hilbert space”, J. Funct. Anal., 212:2 (2004), 500–512 | DOI | MR | Zbl

[10] M. Atijah, “Complex analytic connections in fiber bundles”, Trans. Amer. Math. Soc., 85 (1957), 181–207 | DOI | MR

[11] A. N. Tyurin, Kvantovanie, klassicheskaya i kvantovaya teoriya polya i teta-funktsiya, Sovremennaya matematika, Institut kompyuternykh issledovanii, M., Izhevsk, 2003

[12] K. Takasaki, “Symmetries and tau function of higher dimensional dispersionless integrable hierarchies”, J. Math. Phys., 36:7 (1995), 3574–3607 | DOI | MR | Zbl