Quantum versions of vector quality and exponential law in the frame-work of the non-matricial approach
Sbornik. Mathematics, Tome 197 (2006) no. 12, pp. 1841-1863 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{SM_2006_197_12_a6,
     author = {A. Ya. Helemskii},
     title = {Quantum versions of vector quality and exponential law in the frame-work of the non-matricial approach},
     journal = {Sbornik. Mathematics},
     pages = {1841--1863},
     year = {2006},
     volume = {197},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_12_a6/}
}
TY  - JOUR
AU  - A. Ya. Helemskii
TI  - Quantum versions of vector quality and exponential law in the frame-work of the non-matricial approach
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1841
EP  - 1863
VL  - 197
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_12_a6/
LA  - en
ID  - SM_2006_197_12_a6
ER  - 
%0 Journal Article
%A A. Ya. Helemskii
%T Quantum versions of vector quality and exponential law in the frame-work of the non-matricial approach
%J Sbornik. Mathematics
%D 2006
%P 1841-1863
%V 197
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2006_197_12_a6/
%G en
%F SM_2006_197_12_a6
A. Ya. Helemskii. Quantum versions of vector quality and exponential law in the frame-work of the non-matricial approach. Sbornik. Mathematics, Tome 197 (2006) no. 12, pp. 1841-1863. http://geodesic.mathdoc.fr/item/SM_2006_197_12_a6/

[1] E. G. Effros, “Advances in quantized functional analysis”, Proceedings of the International Congress of Mathematicians, vol. 1, 2 (Berkeley, CA, 1986), Amer. Math. Soc., Providence, RI, 1987, 906–916 | MR | Zbl

[2] E. G. Effros, Z.-J. Ruan, Operator spaces, London Math. Soc. Monogr. (N.S.), 23, Clarendon Press, Oxford, 2000 | MR | Zbl

[3] V. I. Paulsen, Completely bounded maps and operator algebras, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl

[4] D. P. Blecher, C. Le Merdy, Operator algebras and their modules – an operator space approach, London Math. Soc. Monogr. (N.S.), 30, Oxford Univ. Press, Oxford, 2004 | MR | Zbl

[5] G. Pisier, Introduction to operator space theory, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl

[6] C. Webster, Matrix compact sets and operator approximation properties, arXiv: math.FA/ 9804093

[7] C.-K. Ng, From operator spaces to topological bimodules, Preprint

[8] B. Magajna, “The minimal operator module of a Banach module”, Proc. Edinb. Math. Soc. (2), 42:1 (1999), 191–208 | DOI | MR | Zbl

[9] C. Pop, Bimodules normés représentables sur les espaces hilbertiens, arXiv: math.OA/ 9807054 | MR

[10] A. Ya. Helemskii, “Tensor products in quantum functional analysis: non-coordinate approach”, Topological Algebras and Applications (2005), Contemp. Math., 427, Amer. Math. Soc., Providence, RI, 2007, 199–223 | MR | Zbl

[11] E. G. Effros, Z.-J. Ruan, “A new approach to operator spaces”, Canad. Math. Bull., 34 (1991), 329–337 | MR | Zbl

[12] D. P. Blecher, V. I. Paulsen, “Tensor products of operator spaces”, J. Funct. Anal., 99 (1991), 262–292 | DOI | MR | Zbl

[13] A. Ya. Khelemskii, Lektsii po funktsionalnomu analizu, MTsNMO, M., 2004

[14] C. Le Merdy, “On the duality of operator spaces”, Canad. Math. Bull., 38:3 (1995), 334–346 | MR | Zbl

[15] M. Takesaki, Theory of operator algebras. I, Springer-Verlag, New York, 1979 | MR | Zbl