Physical interpretation of certain ruled surfaces in $E^3$ by means of motion of point charge
Sbornik. Mathematics, Tome 197 (2006) no. 12, pp. 1713-1721
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{SM_2006_197_12_a0,
author = {Yu. A. Aminov},
title = {Physical interpretation of certain ruled surfaces in $E^3$ by means of motion of point charge},
journal = {Sbornik. Mathematics},
pages = {1713--1721},
year = {2006},
volume = {197},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_12_a0/}
}
Yu. A. Aminov. Physical interpretation of certain ruled surfaces in $E^3$ by means of motion of point charge. Sbornik. Mathematics, Tome 197 (2006) no. 12, pp. 1713-1721. http://geodesic.mathdoc.fr/item/SM_2006_197_12_a0/
[1] O. A. Goncharova, “Standartnye lineichatye poverkhnosti v $E^n$”, Dopovidi NAN Ukraïni, 2006, no. 3, 7–12 | MR | Zbl
[2] V. Panovskii, M. Filips, Klassicheskaya elektrodinamika, GIFML, M., 1963 | MR | Zbl
[3] V. Blyashke, Differentsialnaya geometriya i geometricheskie osnovy teorii otnositelnosti Einshteina. T. 1: Elementarnaya differentsialnaya geometriya, ONTI, M., L., 1935 | Zbl
[4] V. F. Kagan, Osnovy teorii poverkhnostei v tenzornom izlozhenii. Chast I: Apparat issledovaniya. Obschie osnovaniya teorii i vnutrennyaya geometriya poverkhnosti, GITTL, M., L., 1947 | MR | Zbl