@article{SM_2006_197_11_a6,
author = {I. D. Shkredov},
title = {Dynamical systems with low recurrence rate},
journal = {Sbornik. Mathematics},
pages = {1697--1712},
year = {2006},
volume = {197},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_11_a6/}
}
I. D. Shkredov. Dynamical systems with low recurrence rate. Sbornik. Mathematics, Tome 197 (2006) no. 11, pp. 1697-1712. http://geodesic.mathdoc.fr/item/SM_2006_197_11_a6/
[1] H. Furstenberg, “Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions”, J. Anal. Math., 31 (1977), 204–256 | DOI | MR | Zbl
[2] H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton Univ. Press, Princeton, NJ, 1981 | MR | Zbl
[3] H. Furstenberg, Y. Katznelson, D. Ornstein, “The ergodic theoretical proof of Szemerédi's theorem”, Bull. Amer. Math. Soc. (N.S.), 7:3 (1982), 527–552 | DOI | MR | Zbl
[4] H. Furstenberg, Y. Katznelson, “An ergodic Szemerédi theorem for commuting transformations”, J. Anal. Math., 34 (1978), 275–291 | DOI | MR | Zbl
[5] K. F. Roth, “On certain sets of integers”, J. London Math. Soc., 28 (1953), 104–109 | DOI | MR | Zbl
[6] M. Boshernitzan, “Quantitative recurrence results”, Invent. Math., 113 (1993), 617–631 | DOI | MR | Zbl
[7] W. T. Gowers, “A new proof of Szemerédi's theorem”, Geom. Funct. Anal., 11:3 (2001), 465–588 | DOI | MR | Zbl
[8] I. D. Shkredov, “Ob odnoi zadache Gauersa”, Dokl. RAN, 400:2 (2005), 169–172 | MR
[9] I. D. Shkredov, On one problem of Gowers, arXiv: math.NT/0405406
[10] I. D. Shkredov, On multiple recurrence, arXiv: math.DS/0406413
[11] I. D. Shkredov, On a generalization of Szemerédi's theorem, arXiv: math.DS/0503639
[12] N. G. Moschevitin, “Ob odnoi teoreme Puankare”, UMN, 53:1 (1998), 223–224 | MR | Zbl
[13] I. D. Shkredov, “O vozvraschaemosti v srednem”, Matem. zametki, 72:4 (2002), 625–632 | MR | Zbl
[14] J. Bourgain, “On triples in arithmetic progression”, Geom. Funct. Anal., 9:5 (1999), 968–984 | DOI | MR | Zbl
[15] F. A. Behrend, “On sets of integers which contain no three terms in arithmetic progression”, Proc. Natl. Acad. Sci., 32 (1946), 331–332 | DOI | MR | Zbl
[16] R. A. Rankin, “Sets of integers containing not more than a given number of terms in arithmetic progression”, Proc. Roy. Soc. Edinburgh Sect. A, 65:4 (1961), 332–344 | MR | Zbl
[17] I. Laba, M. T. Lacey, On sets of integers not containing long arithmetic progressions, arXiv: math.CO/0108155
[18] C. L. Stewart, R. Tijdeman, “On infinite–difference sets”, Canad. J. Math., 31:5 (1979), 897–910 | MR | Zbl
[19] T. Tao, Lecture notes 5, http://www.math.ucla.edu/t̃ao/254a.1.03w/notes5.dvi
[20] T. W. Cusick, M. E. Flahive, The Markoff and Lagrange spectra, Math. Surveys Monogr., 30, Amer. Math. Soc., Providence, RI, 1989 | MR | Zbl
[21] G. A. Freiman, Diofantovy priblizheniya i geometriya chisel (Zadacha Markova), Kalininskii gos. un-t, Kalinin, 1975 | MR | Zbl
[22] K. Falconer, Fractal geometry. Mathematical foundations and applications, Wiley, New York, 1990 | MR | Zbl