Dynamical systems with low recurrence rate
Sbornik. Mathematics, Tome 197 (2006) no. 11, pp. 1697-1712 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The question on the recurrence rate of a dynamical system in a metric space of finite Hausdorff measure is considered. For such systems upper bounds for the rate of simple recurrence are due to Boshernitzan and ones for the rate of multiple recurrence to the present author. The subject of the paper are lower bounds for the rate of multiple recurrence. More precisely, an example of a dynamical system (an odometer or a von Neumann transformation) with a low rate of multiple recurrence is constructed. Behrend's theorem on sets containing no arithmetic progressions is used in the proof. Bibliography: 22 titles.
@article{SM_2006_197_11_a6,
     author = {I. D. Shkredov},
     title = {Dynamical systems with low recurrence rate},
     journal = {Sbornik. Mathematics},
     pages = {1697--1712},
     year = {2006},
     volume = {197},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_11_a6/}
}
TY  - JOUR
AU  - I. D. Shkredov
TI  - Dynamical systems with low recurrence rate
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1697
EP  - 1712
VL  - 197
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_11_a6/
LA  - en
ID  - SM_2006_197_11_a6
ER  - 
%0 Journal Article
%A I. D. Shkredov
%T Dynamical systems with low recurrence rate
%J Sbornik. Mathematics
%D 2006
%P 1697-1712
%V 197
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2006_197_11_a6/
%G en
%F SM_2006_197_11_a6
I. D. Shkredov. Dynamical systems with low recurrence rate. Sbornik. Mathematics, Tome 197 (2006) no. 11, pp. 1697-1712. http://geodesic.mathdoc.fr/item/SM_2006_197_11_a6/

[1] H. Furstenberg, “Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions”, J. Anal. Math., 31 (1977), 204–256 | DOI | MR | Zbl

[2] H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton Univ. Press, Princeton, NJ, 1981 | MR | Zbl

[3] H. Furstenberg, Y. Katznelson, D. Ornstein, “The ergodic theoretical proof of Szemerédi's theorem”, Bull. Amer. Math. Soc. (N.S.), 7:3 (1982), 527–552 | DOI | MR | Zbl

[4] H. Furstenberg, Y. Katznelson, “An ergodic Szemerédi theorem for commuting transformations”, J. Anal. Math., 34 (1978), 275–291 | DOI | MR | Zbl

[5] K. F. Roth, “On certain sets of integers”, J. London Math. Soc., 28 (1953), 104–109 | DOI | MR | Zbl

[6] M. Boshernitzan, “Quantitative recurrence results”, Invent. Math., 113 (1993), 617–631 | DOI | MR | Zbl

[7] W. T. Gowers, “A new proof of Szemerédi's theorem”, Geom. Funct. Anal., 11:3 (2001), 465–588 | DOI | MR | Zbl

[8] I. D. Shkredov, “Ob odnoi zadache Gauersa”, Dokl. RAN, 400:2 (2005), 169–172 | MR

[9] I. D. Shkredov, On one problem of Gowers, arXiv: math.NT/0405406

[10] I. D. Shkredov, On multiple recurrence, arXiv: math.DS/0406413

[11] I. D. Shkredov, On a generalization of Szemerédi's theorem, arXiv: math.DS/0503639

[12] N. G. Moschevitin, “Ob odnoi teoreme Puankare”, UMN, 53:1 (1998), 223–224 | MR | Zbl

[13] I. D. Shkredov, “O vozvraschaemosti v srednem”, Matem. zametki, 72:4 (2002), 625–632 | MR | Zbl

[14] J. Bourgain, “On triples in arithmetic progression”, Geom. Funct. Anal., 9:5 (1999), 968–984 | DOI | MR | Zbl

[15] F. A. Behrend, “On sets of integers which contain no three terms in arithmetic progression”, Proc. Natl. Acad. Sci., 32 (1946), 331–332 | DOI | MR | Zbl

[16] R. A. Rankin, “Sets of integers containing not more than a given number of terms in arithmetic progression”, Proc. Roy. Soc. Edinburgh Sect. A, 65:4 (1961), 332–344 | MR | Zbl

[17] I. Laba, M. T. Lacey, On sets of integers not containing long arithmetic progressions, arXiv: math.CO/0108155

[18] C. L. Stewart, R. Tijdeman, “On infinite–difference sets”, Canad. J. Math., 31:5 (1979), 897–910 | MR | Zbl

[19] T. Tao, Lecture notes 5, http://www.math.ucla.edu/t̃ao/254a.1.03w/notes5.dvi

[20] T. W. Cusick, M. E. Flahive, The Markoff and Lagrange spectra, Math. Surveys Monogr., 30, Amer. Math. Soc., Providence, RI, 1989 | MR | Zbl

[21] G. A. Freiman, Diofantovy priblizheniya i geometriya chisel (Zadacha Markova), Kalininskii gos. un-t, Kalinin, 1975 | MR | Zbl

[22] K. Falconer, Fractal geometry. Mathematical foundations and applications, Wiley, New York, 1990 | MR | Zbl