Integral operators with kernels that are discontinuous on
Sbornik. Mathematics, Tome 197 (2006) no. 11, pp. 1669-1696 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study the equiconvergence of expansions in trigonometric Fourier series and in eigenfunctions and associated functions of an integral operator whose kernel has discontinuities of the first kind on broken lines formed from the sides and diagonals of the squares obtained by dividing the unit square into $n^2$ equal squares. Bibliography: 11 titles.
@article{SM_2006_197_11_a5,
     author = {A. P. Khromov},
     title = {Integral operators with kernels that are discontinuous on},
     journal = {Sbornik. Mathematics},
     pages = {1669--1696},
     year = {2006},
     volume = {197},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_11_a5/}
}
TY  - JOUR
AU  - A. P. Khromov
TI  - Integral operators with kernels that are discontinuous on
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1669
EP  - 1696
VL  - 197
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_11_a5/
LA  - en
ID  - SM_2006_197_11_a5
ER  - 
%0 Journal Article
%A A. P. Khromov
%T Integral operators with kernels that are discontinuous on
%J Sbornik. Mathematics
%D 2006
%P 1669-1696
%V 197
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2006_197_11_a5/
%G en
%F SM_2006_197_11_a5
A. P. Khromov. Integral operators with kernels that are discontinuous on. Sbornik. Mathematics, Tome 197 (2006) no. 11, pp. 1669-1696. http://geodesic.mathdoc.fr/item/SM_2006_197_11_a5/

[1] A. P. Khromov, “Ob obraschenii integralnykh operatorov s yadrami, razryvnymi na diagonalyakh”, Matem. zametki, 64:6 (1998), 932–942 | MR | Zbl

[2] V. V. Kornev, A. P. Khromov, “O ravnoskhodimosti razlozhenii po sobstvennym funktsiyam integralnykh operatorov s yadrami, dopuskayuschimi razryvy proizvodnykh na diagonalyakh”, Matem. sb., 192:10 (2001), 33–50 | MR | Zbl

[3] A. P. Gurevich, A. P. Khromov, “Summiruemost po Rissu razlozhenii po sobstvennym funktsiyam integralnykh operatorov”, Izv. vuzov. Ser. matem., 2003, no. 2(489), 24–35 | MR | Zbl

[4] V. P. Kurdyumov, A. P. Khromov, “O bazisakh Rissa iz sobstvennykh funktsii integralnogo operatora s peremennym predelom integrirovaniya”, Matem. zametki, 76:1 (2004), 97–110 | MR | Zbl

[5] V. V. Kornev, A. P. Khromov, “Absolyutnaya skhodimost razlozhenii po sobstvennym i prisoedinennym funktsiyam integralnogo operatora s peremennym predelom integrirovaniya”, Izv. RAN. Ser. matem., 69:4 (2005), 59–74 | MR | Zbl

[6] M. L. Rasulov, Metod konturnogo integrala i ego primenenie k issledovaniyu zadach dlya differentsialnykh uravnenii, Nauka, M., 1964 | MR | MR | Zbl

[7] A. P. Khromov, “Razlozhenie po sobstvennym funktsiyam obyknovennykh lineinykh differentsialnykh operatorov s neregulyarnymi raspadayuschimisya kraevymi usloviyami”, Matem. sb., 70(112):3 (1966), 310–329 | MR

[8] A. P. Khromov, “Differentsialnyi operator s neregulyarnymi raspadayuschimisya kraevymi usloviyami”, Matem. zametki, 19:5 (1976), 763–772 | MR | Zbl

[9] A. P. Khromov, “Teoremy ravnoskhodimosti dlya integro-differentsialnykh i integralnykh operatorov”, Matem. sb., 114(156):3 (1981), 378–405 | MR | Zbl

[10] I. M. Rapoport, O nekotorykh asimptoticheskikh metodakh v teorii differentsialnykh uravnenii, Izd-vo AN USSR, Kiev, 1954 | MR

[11] N. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR