Integral operators with kernels that are discontinuous on
Sbornik. Mathematics, Tome 197 (2006) no. 11, pp. 1669-1696

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the equiconvergence of expansions in trigonometric Fourier series and in eigenfunctions and associated functions of an integral operator whose kernel has discontinuities of the first kind on broken lines formed from the sides and diagonals of the squares obtained by dividing the unit square into $n^2$ equal squares. Bibliography: 11 titles.
@article{SM_2006_197_11_a5,
     author = {A. P. Khromov},
     title = {Integral operators with kernels that are discontinuous on},
     journal = {Sbornik. Mathematics},
     pages = {1669--1696},
     publisher = {mathdoc},
     volume = {197},
     number = {11},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_11_a5/}
}
TY  - JOUR
AU  - A. P. Khromov
TI  - Integral operators with kernels that are discontinuous on
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1669
EP  - 1696
VL  - 197
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_11_a5/
LA  - en
ID  - SM_2006_197_11_a5
ER  - 
%0 Journal Article
%A A. P. Khromov
%T Integral operators with kernels that are discontinuous on
%J Sbornik. Mathematics
%D 2006
%P 1669-1696
%V 197
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2006_197_11_a5/
%G en
%F SM_2006_197_11_a5
A. P. Khromov. Integral operators with kernels that are discontinuous on. Sbornik. Mathematics, Tome 197 (2006) no. 11, pp. 1669-1696. http://geodesic.mathdoc.fr/item/SM_2006_197_11_a5/