@article{SM_2006_197_11_a4,
author = {S. A. Stepanov},
title = {Method of orbit sums in the theory of},
journal = {Sbornik. Mathematics},
pages = {1635--1667},
year = {2006},
volume = {197},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_11_a4/}
}
S. A. Stepanov. Method of orbit sums in the theory of. Sbornik. Mathematics, Tome 197 (2006) no. 11, pp. 1635-1667. http://geodesic.mathdoc.fr/item/SM_2006_197_11_a4/
[1] E. Noether, “Der Endlichkeitssatz der Invarianten endlicher Gruppen”, Math. Ann., 77:1 (1915), 89–92 | DOI | MR | Zbl
[2] D. Richman, “On vector invariants over finite fields”, Adv. Math., 81:1 (1990), 30–65 | DOI | MR | Zbl
[3] D. Richman, “Invariants of finite groups over fields of characteristic $p$”, Adv. Math., 124:1 (1996), 25–48 | DOI | MR | Zbl
[4] H. E. A. Campbell, I. Hughes, “Vector invariants of $U_2(F_p)$: a proof of a conjecture of Richman”, Adv. Math., 126:1 (1997), 1–20 | DOI | MR | Zbl
[5] D. Hilbert, “Ueber die vollen Invariantensystem”, Math. Ann., 42:3 (1893), 313–373 | DOI | MR
[6] E. Noether, “Der Endlichkeitssatz der Invarianten endlicher linearer Gruppen der Characteristik $p$”, Nachr. Gesellsch. Wiss. Göttingen, 1926, 28–35 | Zbl
[7] H. Weyl, The classical groups, Princeton Univ. Press, Princeton, NJ, 1953 | MR | Zbl
[8] S. A. Stepanov, “Vector invariants of symmetric groups in prime characteristic”, Discrete Math. Appl., 10:5 (2000), 455–468 | MR | Zbl
[9] L. Smith, Polynomial invariants of finite groups, Res. Notes Math., 6, A. K. Peters, Wellesley, MA, 1995 | MR | Zbl
[10] P. Fleischmann, “The Noether bound in invariant theory of finite groups”, Adv. Math., 156:1 (2000), 23–32 | DOI | MR | Zbl
[11] G. Kemper, “Lower degree bounds for modular invariants and a question of I. Hughes”, Transform. Groups, 3:2 (1998), 135–144 | DOI | MR | Zbl
[12] P. Fleischmann, “A new degree bound for the vector invariants of symmetric groups”, Trans. Amer. Math. Soc., 350 (1998), 1703–1712 | DOI | MR | Zbl
[13] H. E. A. Campbell, I. Hughes, R. D. Pollack, “Vector invariants of symmetric groups”, Canad. Math. Bull., 33:4 (1990), 391–397 | MR | Zbl