Method of orbit sums in the theory of
Sbornik. Mathematics, Tome 197 (2006) no. 11, pp. 1635-1667 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $F$ be a field, $V$ a finite-dimensional $F$-vector space, $G\leqslant\operatorname{GL}_F(V)$ a finite group, and $V^m=V\oplus\dots\oplus V$ the $m$-fold direct sum with the diagonal action of $G$. The group $G$ acts naturally on the symmetric graded algebra $A_m=F[V^m]$ as a group of non-degenerate linear changes of the variables. Let $A_m^G$ be the subalgebra of invariants of the polynomial algebra $A_m$ with respect to $G$. A classical result of Noether [1] says that if $\operatorname{char}F=0$, then $A_m^G$ is generated as an $F$-algebra by homogeneous polynomials of degree at most $|G|$, no matter how large $m$ can be. On the other hand, it was proved by Richman [2], [3] that this result does not hold when the characteristic of $F$ is positive and divides the order $|G|$ of $G$. Let $p$, $p>2$, be a prime number, $F=F_p$ a finite field of $p$ elements, $V$ a linear $F_p$-vector space of dimension $n$, and $H\leqslant\operatorname{GL}_{F_p}(V)$ a cyclic group of order $p$ generated by a matrix $\gamma$ of a certain special form. In this paper we describe explicitly (Theorem 1) one complete set of generators of $A_m^H$. After that, for an arbitrary complete set of generators of this algebra we find a lower bound for the highest degree of the generating elements of this algebra. This is a significant extension of the corresponding result of Campbell and Hughes [4] for the particular case of $n=2$. As a consequence we show (Theorem 3) that if $m>n$ and $G\geqslant H$ is an arbitrary finite group, then each complete set of generators of $A_m^G$ contains an element of degree at least $2(m-n+2r)(p-1)/r$, where $r=r(H)$ is a positive integer independent of the structure of the generating matrix $\gamma$ of the group $H$. This results refines considerably the earlier lower bound obtained by Richman [3]. Bibliography: 13 titles.
@article{SM_2006_197_11_a4,
     author = {S. A. Stepanov},
     title = {Method of orbit sums in the theory of},
     journal = {Sbornik. Mathematics},
     pages = {1635--1667},
     year = {2006},
     volume = {197},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_11_a4/}
}
TY  - JOUR
AU  - S. A. Stepanov
TI  - Method of orbit sums in the theory of
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1635
EP  - 1667
VL  - 197
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_11_a4/
LA  - en
ID  - SM_2006_197_11_a4
ER  - 
%0 Journal Article
%A S. A. Stepanov
%T Method of orbit sums in the theory of
%J Sbornik. Mathematics
%D 2006
%P 1635-1667
%V 197
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2006_197_11_a4/
%G en
%F SM_2006_197_11_a4
S. A. Stepanov. Method of orbit sums in the theory of. Sbornik. Mathematics, Tome 197 (2006) no. 11, pp. 1635-1667. http://geodesic.mathdoc.fr/item/SM_2006_197_11_a4/

[1] E. Noether, “Der Endlichkeitssatz der Invarianten endlicher Gruppen”, Math. Ann., 77:1 (1915), 89–92 | DOI | MR | Zbl

[2] D. Richman, “On vector invariants over finite fields”, Adv. Math., 81:1 (1990), 30–65 | DOI | MR | Zbl

[3] D. Richman, “Invariants of finite groups over fields of characteristic $p$”, Adv. Math., 124:1 (1996), 25–48 | DOI | MR | Zbl

[4] H. E. A. Campbell, I. Hughes, “Vector invariants of $U_2(F_p)$: a proof of a conjecture of Richman”, Adv. Math., 126:1 (1997), 1–20 | DOI | MR | Zbl

[5] D. Hilbert, “Ueber die vollen Invariantensystem”, Math. Ann., 42:3 (1893), 313–373 | DOI | MR

[6] E. Noether, “Der Endlichkeitssatz der Invarianten endlicher linearer Gruppen der Characteristik $p$”, Nachr. Gesellsch. Wiss. Göttingen, 1926, 28–35 | Zbl

[7] H. Weyl, The classical groups, Princeton Univ. Press, Princeton, NJ, 1953 | MR | Zbl

[8] S. A. Stepanov, “Vector invariants of symmetric groups in prime characteristic”, Discrete Math. Appl., 10:5 (2000), 455–468 | MR | Zbl

[9] L. Smith, Polynomial invariants of finite groups, Res. Notes Math., 6, A. K. Peters, Wellesley, MA, 1995 | MR | Zbl

[10] P. Fleischmann, “The Noether bound in invariant theory of finite groups”, Adv. Math., 156:1 (2000), 23–32 | DOI | MR | Zbl

[11] G. Kemper, “Lower degree bounds for modular invariants and a question of I. Hughes”, Transform. Groups, 3:2 (1998), 135–144 | DOI | MR | Zbl

[12] P. Fleischmann, “A new degree bound for the vector invariants of symmetric groups”, Trans. Amer. Math. Soc., 350 (1998), 1703–1712 | DOI | MR | Zbl

[13] H. E. A. Campbell, I. Hughes, R. D. Pollack, “Vector invariants of symmetric groups”, Canad. Math. Bull., 33:4 (1990), 391–397 | MR | Zbl