Perturbations of Jacobi polynomials
Sbornik. Mathematics, Tome 197 (2006) no. 11, pp. 1607-1633
Voir la notice de l'article provenant de la source Math-Net.Ru
A family of non-complete orthogonal systems of functions on the ray
$[0,\infty]$ depending on three real parameters
$\alpha$, $\beta$, $\theta$ is constructed. The elements of this
system are piecewise hypergeometric functions with singularity
at $x=1$. For $\theta=0$ these functions vanish on $[1,\infty)$
and the system is reduced to the Jacobi polynomials
$P_n^{\alpha,\beta}$ on the interval $[0,1]$.
In the general case the functions constructed can be regarded as an
interpretation of the expressions $P_{n+\theta}^{\alpha,\beta}$.
They are eigenfunctions of an exotic Sturm–Liouville
boundary-value problem for the hypergeometric differential
operator. The spectral measure for this problem is found.
Bibliography: 27 titles.
@article{SM_2006_197_11_a3,
author = {Yu. A. Neretin},
title = {Perturbations of {Jacobi} polynomials},
journal = {Sbornik. Mathematics},
pages = {1607--1633},
publisher = {mathdoc},
volume = {197},
number = {11},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_11_a3/}
}
Yu. A. Neretin. Perturbations of Jacobi polynomials. Sbornik. Mathematics, Tome 197 (2006) no. 11, pp. 1607-1633. http://geodesic.mathdoc.fr/item/SM_2006_197_11_a3/