Perturbations of Jacobi polynomials
Sbornik. Mathematics, Tome 197 (2006) no. 11, pp. 1607-1633 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A family of non-complete orthogonal systems of functions on the ray $[0,\infty]$ depending on three real parameters $\alpha$, $\beta$, $\theta$ is constructed. The elements of this system are piecewise hypergeometric functions with singularity at $x=1$. For $\theta=0$ these functions vanish on $[1,\infty)$ and the system is reduced to the Jacobi polynomials $P_n^{\alpha,\beta}$ on the interval $[0,1]$. In the general case the functions constructed can be regarded as an interpretation of the expressions $P_{n+\theta}^{\alpha,\beta}$. They are eigenfunctions of an exotic Sturm–Liouville boundary-value problem for the hypergeometric differential operator. The spectral measure for this problem is found. Bibliography: 27 titles.
@article{SM_2006_197_11_a3,
     author = {Yu. A. Neretin},
     title = {Perturbations of {Jacobi} polynomials},
     journal = {Sbornik. Mathematics},
     pages = {1607--1633},
     year = {2006},
     volume = {197},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_11_a3/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - Perturbations of Jacobi polynomials
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1607
EP  - 1633
VL  - 197
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_11_a3/
LA  - en
ID  - SM_2006_197_11_a3
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T Perturbations of Jacobi polynomials
%J Sbornik. Mathematics
%D 2006
%P 1607-1633
%V 197
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2006_197_11_a3/
%G en
%F SM_2006_197_11_a3
Yu. A. Neretin. Perturbations of Jacobi polynomials. Sbornik. Mathematics, Tome 197 (2006) no. 11, pp. 1607-1633. http://geodesic.mathdoc.fr/item/SM_2006_197_11_a3/

[1] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. T. 2. Funktsii Besselya. Funktsii parabolicheskogo tsilindra. Ortogonalnye mnogochleny, Nauka, M., 1966 | MR | MR | Zbl

[2] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. T. 1. Gipergeometricheskie funktsii. Funktsii Lezhandra, Nauka, M., 1965 | MR | Zbl

[3] N. Danford, Dzh. T. Shvarts, Lineinye operatory. Spektralnaya teoriya, Mir, M., 1966 | MR | MR | Zbl

[4] N. Ya. Vilenkin, A. U. Klimyk, “Predstavleniya gruppy $\mathrm{SU}(1,1)$ i funktsii Kravchuka–Meiksnera”, Dokl. AN USSR, 1988, no. 6, 12–16 | MR | Zbl

[5] N. Ja. Vilenkin, A. U. Klimyk, Representation of Lie groups and special functions. I: Simplest Lie groups, special functions and integral transforms, Math. Appl. (Soviet Ser.), 72, Kluwer Acad. Publ., Dordrecht, 1991 | MR | Zbl

[6] W. Groenevelt, E. Koelink, “Meixner functions and polynomials related to Lie algebra representations”, J. Phys. A, 35:1 (2002), 65–85 | DOI | MR | Zbl

[7] W. Groenevelt, “Laguerre functions and representations of $\mathfrak{su}(1,1)$”, Indag. Math. (N.S.), 14 (2003), 329–352 ; arXiv: math.CA/0302342 | DOI | MR | Zbl

[8] Yu. A. Neretin, Perturbations of some classical hypergeometric orthogonal systems, Addendum to preprint version of [9], arXiv: math.CA/0309445

[9] Yu. A. Neretin, “Nekotorye nepreryvnye analogi razlozheniya po mnogochlenam Yakobi i vektornoznachnye ortogonalnye bazisy”, Funkts. analiz i ego pril., 39:2 (2005), 31–46 | MR | Zbl

[10] R. Koekoek, R. F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Report No 94-05, Delft University of Technology, Faculty of Technical Mathematics and Informatics, 1994; http://aw.twi.tudelft.nl/k̃oekoek/askey.html

[11] A. F. Nikiforov, V. B. Uvarov, S. K. Suslov, Klassicheskie ortogonalnye mnogochleny diskretnoi peremennoi, Nauka, M., 1985 ; A. F. Nikiforov, V. B. Uvarov, S. K. Suslov, Classical orthogonal polynomials of discrete variable, Springer, Berlin, 1991 | MR | Zbl | MR | Zbl

[12] L. Pukanszky, “On the Kronecker products of irreducible unitary representations of the $2\times2$ real unimodular group. I”, Trans. Amer. Math. Soc., 100 (1961), 116–152 | DOI | MR | Zbl

[13] V. F. Molchanov, “Tenzornye proizvedeniya predstavlenii trekhmernoi gruppy Lorentsa”, Izv. AN SSSR. Ser. matem., 43 (1979), 860–891 | MR | Zbl

[14] W. Miller, Jr., Symmetry and separation of variables, Adisson-Wesley, Reading, MA, 1977 ; U. Miller, ml., Simmetriya i razdelenie peremennykh, Mir, M., 1981 | MR | Zbl | MR | Zbl

[15] A. Tengstrand, “Distributions invariant under an orthogonal group of arbitrary signature”, Math. Scand., 8 (1960), 201–218 | MR | Zbl

[16] V. F. Molchanov, “Analog formuly Plansherelya dlya giperboloidov”, Dokl. AN SSSR, 183 (1968), 288–291 | MR | Zbl

[17] V. F. Molchanov, “Formula Plansherelya dlya psevdorimanovykh simmetricheskikh prostranstv ranga 1”, Dokl. AN SSSR, 290:3 (1986), 545–549 | MR | Zbl

[18] V. F. Molchanov, “Garmonicheskii analiz na odnorodnykh prostranstvakh”, Nekommutativnyi garmonicheskii analiz – 2, Itogi nauki i tekhniki. Sovrem. problemy matem. Fundam. napravl., 59, VINITI, M., 1990, 5–144 | MR | Zbl

[19] J. Faraut, “Distributions sphériques sur les espaces hyperboliques”, J. Math. Pures Appl. (9), 58:4 (1979), 369–444 | MR | Zbl

[20] T. H. Koornwinder, “Jacobi functions and analysis on noncompact semisimple Lie groups”, Special functions: group theoretical aspects and applications, eds. R. Askey, T. Koornwinder, W. Schempp, Reidel, Dordrecht, 1984, 1–85 | MR | Zbl

[21] Yu. A. Neretin, “Indeksnoe gipergeometricheskoe preobrazovanie i imitatsiya analiza yader Berezina na giperbolicheskikh prostranstvakh”, Matem. sb., 192:3 (2001), 83–114 | MR | Zbl

[22] Yu. A. Neretin, “Beta-integraly i konechnye ortogonalnye sistemy mnogochlenov Vilsona”, Matem. sb., 193:7 (2002), 131–148 | MR | Zbl

[23] R. Askey, “Beta integrals and the associated orthogonal polynomials”, Number theory (Madras, 1987), Lecture Notes in Math., 1395, Springer, Berlin, 1989, 84–121 | MR | Zbl

[24] G. E. Andrews, R. Askey, R. Roy, Special functions, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[25] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. T. 3. Dopolnitelnye glavy, Nauka, M., 1986 | MR | Zbl

[26] L. J. Slater, Generalized hypergeometric functions, Cambridge Univ. Press, Cambridge, 1966 | MR | Zbl

[27] O. I. Marichev, Metod vychisleniya integralov ot spetsialnykh funktsii (teoriya i tablitsy formul), Nauka i tekhnika, Minsk, 1978 ; O. I. Marichev, Handbook of integral transforms of higher transcendental functions, Wiley, New York, 1983 | MR | Zbl | MR | Zbl