Perturbations of Jacobi polynomials
Sbornik. Mathematics, Tome 197 (2006) no. 11, pp. 1607-1633

Voir la notice de l'article provenant de la source Math-Net.Ru

A family of non-complete orthogonal systems of functions on the ray $[0,\infty]$ depending on three real parameters $\alpha$, $\beta$$\theta$ is constructed. The elements of this system are piecewise hypergeometric functions with singularity at $x=1$. For $\theta=0$ these functions vanish on $[1,\infty)$ and the system is reduced to the Jacobi polynomials $P_n^{\alpha,\beta}$ on the interval $[0,1]$. In the general case the functions constructed can be regarded as an interpretation of the expressions $P_{n+\theta}^{\alpha,\beta}$. They are eigenfunctions of an exotic Sturm–Liouville boundary-value problem for the hypergeometric differential operator. The spectral measure for this problem is found. Bibliography: 27 titles.
@article{SM_2006_197_11_a3,
     author = {Yu. A. Neretin},
     title = {Perturbations of {Jacobi} polynomials},
     journal = {Sbornik. Mathematics},
     pages = {1607--1633},
     publisher = {mathdoc},
     volume = {197},
     number = {11},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_11_a3/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - Perturbations of Jacobi polynomials
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1607
EP  - 1633
VL  - 197
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_11_a3/
LA  - en
ID  - SM_2006_197_11_a3
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T Perturbations of Jacobi polynomials
%J Sbornik. Mathematics
%D 2006
%P 1607-1633
%V 197
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2006_197_11_a3/
%G en
%F SM_2006_197_11_a3
Yu. A. Neretin. Perturbations of Jacobi polynomials. Sbornik. Mathematics, Tome 197 (2006) no. 11, pp. 1607-1633. http://geodesic.mathdoc.fr/item/SM_2006_197_11_a3/