$A$-Solutions with singularities as almost solutions
Sbornik. Mathematics, Tome 197 (2006) no. 11, pp. 1587-1605 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Almost solutions of quasilinear partial differential equations of the elliptic type are introduced. The class of equations under consideration contains, in particular, the equations of $p$-harmonic functions, the gas dynamic equation, and some other equations. Conditions ensuring that singular solutions to equations are almost solutions are indicated. Applications to the problem of removable singularities of solutions of elliptic equations and quasiregular maps are presented. The proofs are based on connections with differential forms. Bibliography: 32 titles.
@article{SM_2006_197_11_a2,
     author = {V. M. Miklyukov},
     title = {$A${-Solutions} with singularities as almost solutions},
     journal = {Sbornik. Mathematics},
     pages = {1587--1605},
     year = {2006},
     volume = {197},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_11_a2/}
}
TY  - JOUR
AU  - V. M. Miklyukov
TI  - $A$-Solutions with singularities as almost solutions
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1587
EP  - 1605
VL  - 197
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_11_a2/
LA  - en
ID  - SM_2006_197_11_a2
ER  - 
%0 Journal Article
%A V. M. Miklyukov
%T $A$-Solutions with singularities as almost solutions
%J Sbornik. Mathematics
%D 2006
%P 1587-1605
%V 197
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2006_197_11_a2/
%G en
%F SM_2006_197_11_a2
V. M. Miklyukov. $A$-Solutions with singularities as almost solutions. Sbornik. Mathematics, Tome 197 (2006) no. 11, pp. 1587-1605. http://geodesic.mathdoc.fr/item/SM_2006_197_11_a2/

[1] J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear potential theory of degenerate elliptic equations, Clarendon Press, Oxford, 1993 | MR | Zbl

[2] V. M. Miklyukov, “Zony stagnatsii garmonicheskoi funktsii na poverkhnosti i predliuvillevy teoremy”, Geometricheskii analiz i ego prilozheniya, Tez. dokl. Mezhdunar. shkoly-konferentsii, Izd-vo VolGU, Volgograd, 2004, 131–132

[3] V. M. Miklyukov, S.-S. Chow, V. P. Solovjov, “Stagnation zones of ideal flows in long and narrow bands”, Int. J. Math. Math. Sci., 62 (2004), 3339–3356 | DOI | MR | Zbl

[4] D. Franke, O. Martio, V. M. Miklyukov, M. Vuorinen, R. Wisk, “Quasiregular mappings and $\mathscr{W\!T}$-classes of differential forms on Riemannian manifolds”, Pacific J. Math., 202:1 (2002), 73–92 | MR | Zbl

[5] O. Martio, V. M. Miklyukov, M. Vuorinen, Removable singularities of $\mathscr{W\!T}$-differential forms and quasiregular mappings, Preprint No 382, Univ. Helsinki, Helsinki, 2004

[6] G. Federer, Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | MR | Zbl

[7] R. Harvey, J. C. Polking, “Removable singularities of solutions of linear partial differential equations”, Acta Math., 125:1/2 (1970), 39–56 | DOI | MR | Zbl

[8] A. V. Pokrovskii, “Removable singularities for $p$-harmonic functions”, Mezhdunar. shkola-konf. po geometrii i analizu, Tez. dokl., Izd-vo In-ta matem. SO RAN, Novosibirsk, 2004, 201–202

[9] E. P. Dolzhenko, “O predstavlenii nepreryvnykh garmonicheskikh funktsii v vide potentsialov”, Izv. AN SSSR. Ser. matem., 28:5 (1964), 1113–1130 | MR | Zbl

[10] E. P. Dolzhenko, “Ob osobykh tochkakh nepreryvnykh garmonicheskikh funktsii”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1251–1270 | MR | Zbl

[11] L. Carleson, “Removable singularities for continuous harmonic functions in $\mathbb R^n$”, Math. Scand., 12 (1963), 15–18 | MR | Zbl

[12] J. Kral, “Removable singularities of solutions of semielliptic equations”, Rend. Mat. (6), 6 (1973), 763–783 | MR | Zbl

[13] B. Zh. Ischanov, “Ob ustranimykh osobennostyakh funktsii klassov BMO i ikh obobschenii”, Vestn. MGU. Ser. 1. Matem., mekh., 1985, no. 5, 77–80 | MR | Zbl

[14] B. Zh. Ischanov, “Nezamknutye osobye mnozhestva dlya slabykh reshenii lineinykh differentsialnykh uravnenii”, Geometricheskie voprosy teorii funktsii i mnozhestv, Kalininskii gos. un-t, Kalinin, 1989, 41–49 | MR | Zbl

[15] N. X. Uy, “A removable set for Lipschitz harmonic functions”, Michigan Math. J., 37:1 (1990), 45–51 | DOI | MR | Zbl

[16] D. C. Ullrich, “Removable sets for harmonic functions”, Michigan Math. J., 38:3 (1991), 467–473 | DOI | MR | Zbl

[17] G. David, P. Mattila, “Removable sets for Lipschitz harmonic functions in the plane”, Rev. Mat. Iberoamericana, 16:1 (2000), 137–215 | MR | Zbl

[18] V. M. Miklyukov, “Mnozhestva osobennostei reshenii uravneniya maksimalnykh poverkhnostei v prostranstve Minkovskogo”, Sib. matem. zhurn., 33:6 (1992), 131–140 | DOI | MR | Zbl

[19] A. V. Pokrovskii, “Lokalnye approksimatsii resheniyami gipoellipticheskikh uravnenii i ustranimye osobennosti”, Dokl. RAN, 367:1 (1999), 15–17 | MR | Zbl

[20] T. Kilpeläinen, X. Zhong, “Removable sets for continuous solutions of quasilinear elliptic equations”, Proc. Amer. Math. Soc., 130:6 (2002), 1681–1688 | DOI | MR | Zbl

[21] M. A. Lavrentev, B. V. Shabat, Problemy gidrodinamiki i ikh matematicheskie modeli, Nauka, M., 1973 | MR

[22] G. Alessandrini, V. Nesi, “Univalent $\sigma$-harmonic mappings”, Arch. Ration. Mech. Anal., 158:2 (2001), 155–171 | DOI | MR | Zbl

[23] D. Faraco, Beltrami operators and microstructure, Thesis, University of Helsinki, 2002

[24] Yu. G. Reshetnyak, Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982 | MR | Zbl

[25] I. N. Pesin, “Mnozhestva ustranimykh osobennostei analiticheskikh funktsii i kvazikonformnye otobrazheniya”, Issledovaniya po sovremennym problemam teorii funktsii kompleksnogo peremennogo, Fizmatlit, M., 1960, 419–424 | MR | Zbl

[26] V. M. Miklyukov, “Ob ustranimykh osobennostyakh kvazikonformnykh otobrazhenii v prostranstve”, Dokl. AN SSSR, 188:3 (1969), 525–527 | MR | Zbl

[27] V. V. Aseev, A. V. Sychev, “O mnozhestvakh ustranimykh dlya prostranstvennykh kvazikonformnykh otobrazhenii”, Sib. matem. zhurn., 15:6 (1974), 1213–1227 | MR | Zbl

[28] A. V. Sychev, Moduli i prostranstvennye kvazikonformnye otobrazheniya, Nauka, Novosibirsk, 1983 | MR | Zbl

[29] R. Kaufman, J.-M. Wu, “On removable sets for quasiconformal mappings”, Ark. Mat., 34:1 (1996), 141–158 | DOI | MR | Zbl

[30] L. Bers, Matematicheskie voprosy dozvukovoi i okolozvukovoi gazovoi dinamiki, IL, M., 1961 | MR | MR | Zbl

[31] E. P. Dolzhenko, “O “stiranii” osobennostei analiticheskikh funktsii”, UMN, 18:4 (1963), 135–142 | MR | Zbl

[32] A. V. Pokrovskii, “Ob ustranimykh osobennostyakh reshenii odnorodnykh ellipticheskikh uravnenii v klassakh Nikolskogo–Besova”, Dokl. RAN, 380:2 (2001), 168–171 | MR | Zbl