@article{SM_2006_197_11_a2,
author = {V. M. Miklyukov},
title = {$A${-Solutions} with singularities as almost solutions},
journal = {Sbornik. Mathematics},
pages = {1587--1605},
year = {2006},
volume = {197},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_11_a2/}
}
V. M. Miklyukov. $A$-Solutions with singularities as almost solutions. Sbornik. Mathematics, Tome 197 (2006) no. 11, pp. 1587-1605. http://geodesic.mathdoc.fr/item/SM_2006_197_11_a2/
[1] J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear potential theory of degenerate elliptic equations, Clarendon Press, Oxford, 1993 | MR | Zbl
[2] V. M. Miklyukov, “Zony stagnatsii garmonicheskoi funktsii na poverkhnosti i predliuvillevy teoremy”, Geometricheskii analiz i ego prilozheniya, Tez. dokl. Mezhdunar. shkoly-konferentsii, Izd-vo VolGU, Volgograd, 2004, 131–132
[3] V. M. Miklyukov, S.-S. Chow, V. P. Solovjov, “Stagnation zones of ideal flows in long and narrow bands”, Int. J. Math. Math. Sci., 62 (2004), 3339–3356 | DOI | MR | Zbl
[4] D. Franke, O. Martio, V. M. Miklyukov, M. Vuorinen, R. Wisk, “Quasiregular mappings and $\mathscr{W\!T}$-classes of differential forms on Riemannian manifolds”, Pacific J. Math., 202:1 (2002), 73–92 | MR | Zbl
[5] O. Martio, V. M. Miklyukov, M. Vuorinen, Removable singularities of $\mathscr{W\!T}$-differential forms and quasiregular mappings, Preprint No 382, Univ. Helsinki, Helsinki, 2004
[6] G. Federer, Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | MR | Zbl
[7] R. Harvey, J. C. Polking, “Removable singularities of solutions of linear partial differential equations”, Acta Math., 125:1/2 (1970), 39–56 | DOI | MR | Zbl
[8] A. V. Pokrovskii, “Removable singularities for $p$-harmonic functions”, Mezhdunar. shkola-konf. po geometrii i analizu, Tez. dokl., Izd-vo In-ta matem. SO RAN, Novosibirsk, 2004, 201–202
[9] E. P. Dolzhenko, “O predstavlenii nepreryvnykh garmonicheskikh funktsii v vide potentsialov”, Izv. AN SSSR. Ser. matem., 28:5 (1964), 1113–1130 | MR | Zbl
[10] E. P. Dolzhenko, “Ob osobykh tochkakh nepreryvnykh garmonicheskikh funktsii”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1251–1270 | MR | Zbl
[11] L. Carleson, “Removable singularities for continuous harmonic functions in $\mathbb R^n$”, Math. Scand., 12 (1963), 15–18 | MR | Zbl
[12] J. Kral, “Removable singularities of solutions of semielliptic equations”, Rend. Mat. (6), 6 (1973), 763–783 | MR | Zbl
[13] B. Zh. Ischanov, “Ob ustranimykh osobennostyakh funktsii klassov BMO i ikh obobschenii”, Vestn. MGU. Ser. 1. Matem., mekh., 1985, no. 5, 77–80 | MR | Zbl
[14] B. Zh. Ischanov, “Nezamknutye osobye mnozhestva dlya slabykh reshenii lineinykh differentsialnykh uravnenii”, Geometricheskie voprosy teorii funktsii i mnozhestv, Kalininskii gos. un-t, Kalinin, 1989, 41–49 | MR | Zbl
[15] N. X. Uy, “A removable set for Lipschitz harmonic functions”, Michigan Math. J., 37:1 (1990), 45–51 | DOI | MR | Zbl
[16] D. C. Ullrich, “Removable sets for harmonic functions”, Michigan Math. J., 38:3 (1991), 467–473 | DOI | MR | Zbl
[17] G. David, P. Mattila, “Removable sets for Lipschitz harmonic functions in the plane”, Rev. Mat. Iberoamericana, 16:1 (2000), 137–215 | MR | Zbl
[18] V. M. Miklyukov, “Mnozhestva osobennostei reshenii uravneniya maksimalnykh poverkhnostei v prostranstve Minkovskogo”, Sib. matem. zhurn., 33:6 (1992), 131–140 | DOI | MR | Zbl
[19] A. V. Pokrovskii, “Lokalnye approksimatsii resheniyami gipoellipticheskikh uravnenii i ustranimye osobennosti”, Dokl. RAN, 367:1 (1999), 15–17 | MR | Zbl
[20] T. Kilpeläinen, X. Zhong, “Removable sets for continuous solutions of quasilinear elliptic equations”, Proc. Amer. Math. Soc., 130:6 (2002), 1681–1688 | DOI | MR | Zbl
[21] M. A. Lavrentev, B. V. Shabat, Problemy gidrodinamiki i ikh matematicheskie modeli, Nauka, M., 1973 | MR
[22] G. Alessandrini, V. Nesi, “Univalent $\sigma$-harmonic mappings”, Arch. Ration. Mech. Anal., 158:2 (2001), 155–171 | DOI | MR | Zbl
[23] D. Faraco, Beltrami operators and microstructure, Thesis, University of Helsinki, 2002
[24] Yu. G. Reshetnyak, Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982 | MR | Zbl
[25] I. N. Pesin, “Mnozhestva ustranimykh osobennostei analiticheskikh funktsii i kvazikonformnye otobrazheniya”, Issledovaniya po sovremennym problemam teorii funktsii kompleksnogo peremennogo, Fizmatlit, M., 1960, 419–424 | MR | Zbl
[26] V. M. Miklyukov, “Ob ustranimykh osobennostyakh kvazikonformnykh otobrazhenii v prostranstve”, Dokl. AN SSSR, 188:3 (1969), 525–527 | MR | Zbl
[27] V. V. Aseev, A. V. Sychev, “O mnozhestvakh ustranimykh dlya prostranstvennykh kvazikonformnykh otobrazhenii”, Sib. matem. zhurn., 15:6 (1974), 1213–1227 | MR | Zbl
[28] A. V. Sychev, Moduli i prostranstvennye kvazikonformnye otobrazheniya, Nauka, Novosibirsk, 1983 | MR | Zbl
[29] R. Kaufman, J.-M. Wu, “On removable sets for quasiconformal mappings”, Ark. Mat., 34:1 (1996), 141–158 | DOI | MR | Zbl
[30] L. Bers, Matematicheskie voprosy dozvukovoi i okolozvukovoi gazovoi dinamiki, IL, M., 1961 | MR | MR | Zbl
[31] E. P. Dolzhenko, “O “stiranii” osobennostei analiticheskikh funktsii”, UMN, 18:4 (1963), 135–142 | MR | Zbl
[32] A. V. Pokrovskii, “Ob ustranimykh osobennostyakh reshenii odnorodnykh ellipticheskikh uravnenii v klassakh Nikolskogo–Besova”, Dokl. RAN, 380:2 (2001), 168–171 | MR | Zbl