Self-similar functions in $L_2[0,1]$ and the
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 197 (2006) no. 11, pp. 1569-1586
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The question of the asymptotic behaviour of the spectrum of the boundary
value problem
\begin{equation*}
-y''-\lambda\rho y=0,
\qquad
y(0)=y(1)=0,
\end{equation*}  
is considered,
where $\rho$ is a function in $\mathring W_2^{-1}[0,1]$ with arithmetically
self-similar primitive function. It is not assumed here that
the weight $\rho$ has a constant sign. The theoretical
results obtained are illustrated by the data of numerical
calculations.
Bibliography: 10 titles.
			
            
            
            
          
        
      @article{SM_2006_197_11_a1,
     author = {A. A. Vladimirov and I. A. Sheipak},
     title = {Self-similar functions in $L_2[0,1]$ and the},
     journal = {Sbornik. Mathematics},
     pages = {1569--1586},
     publisher = {mathdoc},
     volume = {197},
     number = {11},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_11_a1/}
}
                      
                      
                    A. A. Vladimirov; I. A. Sheipak. Self-similar functions in $L_2[0,1]$ and the. Sbornik. Mathematics, Tome 197 (2006) no. 11, pp. 1569-1586. http://geodesic.mathdoc.fr/item/SM_2006_197_11_a1/
