Self-similar functions in $L_2[0,1]$ and the
Sbornik. Mathematics, Tome 197 (2006) no. 11, pp. 1569-1586

Voir la notice de l'article provenant de la source Math-Net.Ru

The question of the asymptotic behaviour of the spectrum of the boundary value problem \begin{equation*} -y''-\lambda\rho y=0, \qquad y(0)=y(1)=0, \end{equation*} is considered, where $\rho$ is a function in $\mathring W_2^{-1}[0,1]$ with arithmetically self-similar primitive function. It is not assumed here that the weight $\rho$ has a constant sign. The theoretical results obtained are illustrated by the data of numerical calculations. Bibliography: 10 titles.
@article{SM_2006_197_11_a1,
     author = {A. A. Vladimirov and I. A. Sheipak},
     title = {Self-similar functions in $L_2[0,1]$ and the},
     journal = {Sbornik. Mathematics},
     pages = {1569--1586},
     publisher = {mathdoc},
     volume = {197},
     number = {11},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_11_a1/}
}
TY  - JOUR
AU  - A. A. Vladimirov
AU  - I. A. Sheipak
TI  - Self-similar functions in $L_2[0,1]$ and the
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1569
EP  - 1586
VL  - 197
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_11_a1/
LA  - en
ID  - SM_2006_197_11_a1
ER  - 
%0 Journal Article
%A A. A. Vladimirov
%A I. A. Sheipak
%T Self-similar functions in $L_2[0,1]$ and the
%J Sbornik. Mathematics
%D 2006
%P 1569-1586
%V 197
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2006_197_11_a1/
%G en
%F SM_2006_197_11_a1
A. A. Vladimirov; I. A. Sheipak. Self-similar functions in $L_2[0,1]$ and the. Sbornik. Mathematics, Tome 197 (2006) no. 11, pp. 1569-1586. http://geodesic.mathdoc.fr/item/SM_2006_197_11_a1/