@article{SM_2006_197_11_a1,
author = {A. A. Vladimirov and I. A. Sheipak},
title = {Self-similar functions in $L_2[0,1]$ and the},
journal = {Sbornik. Mathematics},
pages = {1569--1586},
year = {2006},
volume = {197},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_11_a1/}
}
A. A. Vladimirov; I. A. Sheipak. Self-similar functions in $L_2[0,1]$ and the. Sbornik. Mathematics, Tome 197 (2006) no. 11, pp. 1569-1586. http://geodesic.mathdoc.fr/item/SM_2006_197_11_a1/
[1] B. Ćurgus, H. Langer, “A Krein space approach to symmetric ordinary differential operators with an indefinite weight function”, J. Differential Equations, 79:1 (1989), 31–61 | DOI | MR | Zbl
[2] T. Ya. Azizov, I. S. Iokhvidov, Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka, M., 1986 | MR | Zbl
[3] I. S. Kats, M. G. Krein, “O spektralnykh funktsiyakh struny”, v kn. F. Atkinson, Diskretnye i nepreryvnye granichnye zadachi, Mir, M., 1968, 648–733 | MR | MR | Zbl
[4] M. Solomyak, E. Verbitsky, “On a spectral problem related to self-similar measures”, Bull. London Math. Soc., 27:3 (1995), 242–248 | DOI | MR | Zbl
[5] A. M. Savchuk, A. A. Shkalikov, “Operatory Shturma–Liuvillya s potentsialami-raspredeleniyami”, Tr. MMO, 64, 2003, 159–212 | MR | Zbl
[6] M. G. Krein, “Vvedenie v geometriyu indefinitnykh $J$-prostranstv i teoriyu operatorov v etikh prostranstvakh”, Vtoraya letnyaya matematicheskaya shkola, t. 1, Naukova dumka, Kiev, 1965, 15–92 | MR | Zbl
[7] P. Lancaster, A. Shkalikov, Qiang Ye, “Strongly definitizable linear pencils in Hilbert space”, Integral Equations Operator Theory, 17:3 (1993), 338–360 | DOI | MR | Zbl
[8] M. Levitin, D. Vassiliev, “Spectral asymptotics, renewal theorem, and the Berry conjecture for a class of fractals”, Proc. London Math. Soc. (3), 72 (1996), 188–214 | DOI | MR | Zbl
[9] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, t. 2, Mir, M., 1967 | MR | MR | Zbl
[10] F. Riss, B. Sekefalvi-Nad, Lektsii po funktsionalnomu analizu, Mir, M., 1979 | MR | MR | Zbl