Representation of the Green's function of~Schr\"odinger's
Sbornik. Mathematics, Tome 197 (2006) no. 11, pp. 1559-1568

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cauchy problem is considered for the many-dimensional Schrödinger equation describing a particle in constant electric and magnetic fields and the field of a potential equal to the sum of a decreasing and an almost periodic function. An approximation of the Green's function of the Cauchy problem for such an equation by a path integral over Gaussian wave packets is put forward. Bibliography: 21 titles.
@article{SM_2006_197_11_a0,
     author = {A. A. Arsen'ev},
     title = {Representation of the {Green's} function {of~Schr\"odinger's}},
     journal = {Sbornik. Mathematics},
     pages = {1559--1568},
     publisher = {mathdoc},
     volume = {197},
     number = {11},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_11_a0/}
}
TY  - JOUR
AU  - A. A. Arsen'ev
TI  - Representation of the Green's function of~Schr\"odinger's
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1559
EP  - 1568
VL  - 197
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_11_a0/
LA  - en
ID  - SM_2006_197_11_a0
ER  - 
%0 Journal Article
%A A. A. Arsen'ev
%T Representation of the Green's function of~Schr\"odinger's
%J Sbornik. Mathematics
%D 2006
%P 1559-1568
%V 197
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2006_197_11_a0/
%G en
%F SM_2006_197_11_a0
A. A. Arsen'ev. Representation of the Green's function of~Schr\"odinger's. Sbornik. Mathematics, Tome 197 (2006) no. 11, pp. 1559-1568. http://geodesic.mathdoc.fr/item/SM_2006_197_11_a0/