@article{SM_2006_197_10_a7,
author = {V. Yu. Protasov and Yu. A. Farkov},
title = {Dyadic wavelets and refinable functions on~a~half-line},
journal = {Sbornik. Mathematics},
pages = {1529--1558},
year = {2006},
volume = {197},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_10_a7/}
}
V. Yu. Protasov; Yu. A. Farkov. Dyadic wavelets and refinable functions on a half-line. Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1529-1558. http://geodesic.mathdoc.fr/item/SM_2006_197_10_a7/
[1] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha: teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl
[2] F. Schipp, W. R. Wade, P. Simon, Walsh series: An introduction to dyadic harmonic analysis, Adam Hilger, Bristol, 1990 | MR | Zbl
[3] I. Dobeshi, Desyat lektsii po veivletam, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001 | MR | Zbl
[4] W. C. Lang, “Fractal multiwavelets related to the Cantor dyadic group”, Internat. J. Math. Sci., 21 (1998), 307–314 | DOI | MR | Zbl
[5] W. C. Lang, “Wavelet analysis on the Cantor dyadic group”, Houston J. Math., 24 (1998), 533–544 | MR | Zbl
[6] Yu. A. Farkov, “Orthogonal $p$-wavelets on $\mathbb R_+$”, Wavelets and splines, St. Petersburg Univ. Press, St. Petersburg, 2005, 4–26 | MR | Zbl
[7] Yu. A. Farkov, “Ortogonalnye veivlety s kompaktnymi nositelyami na lokalno kompaktnykh abelevykh gruppakh”, Izv. RAN. Ser. matem., 69:3 (2005), 193–220 | MR | Zbl
[8] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, AFTs, M., 1999 | MR | Zbl
[9] D. Colella, C. Heil, “Characterization of scaling functions. I. Continuous solutions”, SIAM J. Matrix Anal. Appl., 15 (1994), 496–518 | DOI | MR | Zbl
[10] V. Yu. Protasov, “Obobschennyi sovmestnyi spektralnyi radius. Geometricheskii podkhod”, Izv. RAN. Ser. matem., 61:5 (1997), 99–136 | MR | Zbl
[11] W. Lawton, S. L. Lee, Z. Shen, “An algorithm for matrix extension and wavelet construction”, Math. Comp., 65:214 (1996), 723–737 | DOI | MR | Zbl
[12] I. Daubechies, J. Lagarias, “Two-scale difference equations. I. Global regularity of solutions”, SIAM. J. Math. Anal., 22 (1991), 1388–1410 | DOI | MR | Zbl
[13] I. Daubechies, J. Lagarias, “Two-scale difference equations. II. Local regularity, infinite products of matrices and fractals”, SIAM. J. Math. Anal., 23 (1992), 1031–1079 | DOI | MR | Zbl