Dyadic wavelets and refinable functions on a half-line
Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1529-1558 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For an arbitrary positive integer $n$ refinable functions on the positive half-line $\mathbb R_+$ are defined, with masks that are Walsh polynomials of order $2^n-1$. The Strang-Fix conditions, the partition of unity property, the linear independence, the stability, and the orthonormality of integer translates of a solution of the corresponding refinement equations are studied. Necessary and sufficient conditions ensuring that these solutions generate multiresolution analysis in $L^2(\mathbb R_+)$ are deduced. This characterizes all systems of dyadic compactly supported wavelets on $\mathbb R_+$ and gives one an algorithm for the construction of such systems. A method for finding estimates for the exponents of regularity of refinable functions is presented, which leads to sharp estimates in the case of small $n$. In particular, all the dyadic entire compactly supported refinable functions on $\mathbb R_+$ are characterized. It is shown that a refinable function is either dyadic entire or has a finite exponent of regularity, which, moreover, has effective upper estimates. Bibliography: 13 items.
@article{SM_2006_197_10_a7,
     author = {V. Yu. Protasov and Yu. A. Farkov},
     title = {Dyadic wavelets and refinable functions on~a~half-line},
     journal = {Sbornik. Mathematics},
     pages = {1529--1558},
     year = {2006},
     volume = {197},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_10_a7/}
}
TY  - JOUR
AU  - V. Yu. Protasov
AU  - Yu. A. Farkov
TI  - Dyadic wavelets and refinable functions on a half-line
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1529
EP  - 1558
VL  - 197
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_10_a7/
LA  - en
ID  - SM_2006_197_10_a7
ER  - 
%0 Journal Article
%A V. Yu. Protasov
%A Yu. A. Farkov
%T Dyadic wavelets and refinable functions on a half-line
%J Sbornik. Mathematics
%D 2006
%P 1529-1558
%V 197
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2006_197_10_a7/
%G en
%F SM_2006_197_10_a7
V. Yu. Protasov; Yu. A. Farkov. Dyadic wavelets and refinable functions on a half-line. Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1529-1558. http://geodesic.mathdoc.fr/item/SM_2006_197_10_a7/

[1] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha: teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl

[2] F. Schipp, W. R. Wade, P. Simon, Walsh series: An introduction to dyadic harmonic analysis, Adam Hilger, Bristol, 1990 | MR | Zbl

[3] I. Dobeshi, Desyat lektsii po veivletam, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001 | MR | Zbl

[4] W. C. Lang, “Fractal multiwavelets related to the Cantor dyadic group”, Internat. J. Math. Sci., 21 (1998), 307–314 | DOI | MR | Zbl

[5] W. C. Lang, “Wavelet analysis on the Cantor dyadic group”, Houston J. Math., 24 (1998), 533–544 | MR | Zbl

[6] Yu. A. Farkov, “Orthogonal $p$-wavelets on $\mathbb R_+$”, Wavelets and splines, St. Petersburg Univ. Press, St. Petersburg, 2005, 4–26 | MR | Zbl

[7] Yu. A. Farkov, “Ortogonalnye veivlety s kompaktnymi nositelyami na lokalno kompaktnykh abelevykh gruppakh”, Izv. RAN. Ser. matem., 69:3 (2005), 193–220 | MR | Zbl

[8] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, AFTs, M., 1999 | MR | Zbl

[9] D. Colella, C. Heil, “Characterization of scaling functions. I. Continuous solutions”, SIAM J. Matrix Anal. Appl., 15 (1994), 496–518 | DOI | MR | Zbl

[10] V. Yu. Protasov, “Obobschennyi sovmestnyi spektralnyi radius. Geometricheskii podkhod”, Izv. RAN. Ser. matem., 61:5 (1997), 99–136 | MR | Zbl

[11] W. Lawton, S. L. Lee, Z. Shen, “An algorithm for matrix extension and wavelet construction”, Math. Comp., 65:214 (1996), 723–737 | DOI | MR | Zbl

[12] I. Daubechies, J. Lagarias, “Two-scale difference equations. I. Global regularity of solutions”, SIAM. J. Math. Anal., 22 (1991), 1388–1410 | DOI | MR | Zbl

[13] I. Daubechies, J. Lagarias, “Two-scale difference equations. II. Local regularity, infinite products of matrices and fractals”, SIAM. J. Math. Anal., 23 (1992), 1031–1079 | DOI | MR | Zbl