Dyadic wavelets and refinable functions on~a~half-line
Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1529-1558

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arbitrary positive integer $n$ refinable functions on the positive half-line $\mathbb R_+$ are defined, with masks that are Walsh polynomials of order $2^n-1$. The Strang-Fix conditions, the partition of unity property, the linear independence, the stability, and the orthonormality of integer translates of a solution of the corresponding refinement equations are studied. Necessary and sufficient conditions ensuring that these solutions generate multiresolution analysis in $L^2(\mathbb R_+)$ are deduced. This characterizes all systems of dyadic compactly supported wavelets on $\mathbb R_+$ and gives one an algorithm for the construction of such systems. A method for finding estimates for the exponents of regularity of refinable functions is presented, which leads to sharp estimates in the case of small $n$. In particular, all the dyadic entire compactly supported refinable functions on $\mathbb R_+$ are characterized. It is shown that a refinable function is either dyadic entire or has a finite exponent of regularity, which, moreover, has effective upper estimates. Bibliography: 13 items.
@article{SM_2006_197_10_a7,
     author = {V. Yu. Protasov and Yu. A. Farkov},
     title = {Dyadic wavelets and refinable functions on~a~half-line},
     journal = {Sbornik. Mathematics},
     pages = {1529--1558},
     publisher = {mathdoc},
     volume = {197},
     number = {10},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_10_a7/}
}
TY  - JOUR
AU  - V. Yu. Protasov
AU  - Yu. A. Farkov
TI  - Dyadic wavelets and refinable functions on~a~half-line
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1529
EP  - 1558
VL  - 197
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_10_a7/
LA  - en
ID  - SM_2006_197_10_a7
ER  - 
%0 Journal Article
%A V. Yu. Protasov
%A Yu. A. Farkov
%T Dyadic wavelets and refinable functions on~a~half-line
%J Sbornik. Mathematics
%D 2006
%P 1529-1558
%V 197
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2006_197_10_a7/
%G en
%F SM_2006_197_10_a7
V. Yu. Protasov; Yu. A. Farkov. Dyadic wavelets and refinable functions on~a~half-line. Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1529-1558. http://geodesic.mathdoc.fr/item/SM_2006_197_10_a7/