Periodic functions on a free semigroup
Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1509-1528

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X^*$ be the set of words over a finite alphabet $X$. The concept of periodic function $u\colon X^*\to M$ is considered. Such functions arise as the state transition functions and the output functions of automata. A method for the evaluation of the period and other characteristics of a periodic function with the use of the vector-period group and the fundamental group of the graph of the function is put forward. Bibliography: 5 titles.
@article{SM_2006_197_10_a6,
     author = {V. L. Kurakin},
     title = {Periodic functions on a free semigroup},
     journal = {Sbornik. Mathematics},
     pages = {1509--1528},
     publisher = {mathdoc},
     volume = {197},
     number = {10},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_10_a6/}
}
TY  - JOUR
AU  - V. L. Kurakin
TI  - Periodic functions on a free semigroup
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1509
EP  - 1528
VL  - 197
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_10_a6/
LA  - en
ID  - SM_2006_197_10_a6
ER  - 
%0 Journal Article
%A V. L. Kurakin
%T Periodic functions on a free semigroup
%J Sbornik. Mathematics
%D 2006
%P 1509-1528
%V 197
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2006_197_10_a6/
%G en
%F SM_2006_197_10_a6
V. L. Kurakin. Periodic functions on a free semigroup. Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1509-1528. http://geodesic.mathdoc.fr/item/SM_2006_197_10_a6/