Periodic functions on a free semigroup
Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1509-1528
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $X^*$ be the set of words over a finite alphabet $X$. The concept of periodic function $u\colon X^*\to M$ is considered. Such functions arise as the state transition functions and the output functions of automata. A method for the evaluation of the period and other characteristics of a periodic function with the use of the vector-period group and the fundamental group of the graph of the function is put forward. Bibliography: 5 titles.
@article{SM_2006_197_10_a6,
author = {V. L. Kurakin},
title = {Periodic functions on a free semigroup},
journal = {Sbornik. Mathematics},
pages = {1509--1528},
year = {2006},
volume = {197},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_10_a6/}
}
V. L. Kurakin. Periodic functions on a free semigroup. Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1509-1528. http://geodesic.mathdoc.fr/item/SM_2006_197_10_a6/
[1] V. B. Kudryavtsev , S. V. Aleshin, A. S. Podkolzin, Vvedenie v teoriyu avtomatov, Nauka, M., 1985 | MR | Zbl
[2] V. L. Kurakin, “Svobodnye registry sdviga. I”, Trudy po diskretnoi matematike, 9, Gelios ARV, M., 2006, 77–109
[3] V. L. Kurakin, A. S. Kuzmin, A. V. Mikhalev, A. A. Nechaev, “Linear recurring sequences over rings and modules”, J. Math. Sci. (New York), 76:6 (1995), 2793–2915 | DOI | MR | Zbl
[4] M. Kholl, Teoriya grupp, IL, M., 1962 | MR | Zbl
[5] O. V. Bogopolskii, Vvedenie v teoriyu grupp, Institut kompyuternykh issledovanii, M., Izhevsk, 2002