@article{SM_2006_197_10_a5,
author = {Ant. A. Klyachko},
title = {$SQ$-universality of one-relator relative presentations},
journal = {Sbornik. Mathematics},
pages = {1489--1508},
year = {2006},
volume = {197},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_10_a5/}
}
Ant. A. Klyachko. $SQ$-universality of one-relator relative presentations. Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1489-1508. http://geodesic.mathdoc.fr/item/SM_2006_197_10_a5/
[1] R. Lindon, P. Shupp, Kombinatornaya teoriya grupp, Mir, M., 1980 | MR | MR | Zbl
[2] K. I. Lossov, “$SQ$-universalnost svobodnykh proizvedenii s konechnymi ob'edinennymi podgruppami”, Sib. matem. zhurn., 27:6 (1986), 128–139 | MR | Zbl
[3] P. M. Neumann, “The $SQ$-universality of some finitely presented groups”, J. Austral. Math. Soc., 16 (1973), 1–6 | DOI | MR | Zbl
[4] A. Yu. Olshanskii, “$SQ$-universalnost giperbolicheskikh grupp”, Matem. sb., 186:8 (1995), 119–132 | MR | Zbl
[5] G. Arzhantseva, A. Minasyan, D. Osin, The $SQ$-universality and residual properties of relatively hyperbolic groups, arXiv: math.GR/0601590 | MR
[6] G. S. Sacerdote, P. E. Schupp, “SQ-universality in HNN groups and one relator groups”, J. London Math. Soc. (2), 7 (1974), 733–740 | DOI | MR | Zbl
[7] B. Baumslag, S. Pride, “Groups with two more generators than relators”, J. London Math. Soc. (2), 17 (1978), 425–426 | DOI | MR | Zbl
[8] R. Stöhr, “Groups with one more generator than relators”, Math. Z., 182:1 (1983), 45–47 | DOI | MR | Zbl
[9] M. Gromov, “Volume and bounded cohomology”, Inst. Hautes Études Sci. Publ. Math., 1982:56 (1983), 5–99 | MR | Zbl
[10] M. Edjvet, “Groups with balanced presentations”, Arch. Math. (Basel), 42:4 (1984), 311–313 | DOI | MR | Zbl
[11] J. Howie, “Free subgroups in groups of small deficiency”, J. Group Theory, 1:1 (1998), 95–112 | DOI | MR | Zbl
[12] J. O. Button, Large mapping tori of free group endomorphisms, arXiv: math.GR/0511715
[13] M. Lackenby, “A characterisation of large finitely presented groups”, J. Algebra, 287:2 (2005), 458–473 ; arXiv: math.GR/0403129 | DOI | MR | Zbl
[14] A. Yu. Olshanskii, D. V. Osin, Large groups and their periodic quotients,, arXiv: math.GR/0601589 | MR
[15] Ant. A. Klyachko, “Svobodnye podgruppy otnositelnykh kopredstavlenii s odnim sootnosheniem”, Algebra i logika, 46:3 (2007), 290–298 | MR
[16] Ant. A. Klyachko, “A funny property of a sphere and equations over groups”, Comm. Algebra, 21 (1993), 2555–2575 | DOI | MR | Zbl
[17] Ant. A. Klyachko, “Gipoteza Kervera–Laudenbakha i kopredstavleniya prostykh grupp”, Algebra i logika, 44:4 (2005), 399–437 ; arXiv: math.GR/0409146 | MR
[18] M. M. Cohen, C. Rourke, “The surjectivity problem for one-generator, one-relator extensions of torsion-free groups”, Geom. Topol., 5 (2001), 127–142 ; arXiv: math.GR/0009101 | DOI | MR | Zbl
[19] Ant. A. Klyachko, Gipoteza Kervera–Laudenbakha i uravneniya nad gruppami, Dis. ... kand. fiz.-matem. nauk, MGU, M., 1994
[20] R. Fenn, C. Rourke, “Klyachko's methods and the solution of equations over torsion-free groups”, Enseign. Math. (2), 42 (1996), 49–74 | MR | Zbl
[21] M. Forester, C. Rourke, “Diagrams and the second homotopy group”, Comm. Anal. Geom., 13 (2005), 801–820 ; arXiv: math.AT/0306088 | MR | Zbl
[22] Ant. A. Klyachko, “Kak obobschit izvestnye rezultaty ob uravneniyakh nad gruppami”, Matem. zametki, 79:3 (2006), 409–419 ; arXiv: math.GR/0406382 | MR | Zbl
[23] S. D. Promislow, “A simple example of a torsion-free nonunique product group”, Bull. London Math. Soc., 20 (1988), 302–304 | DOI | MR | Zbl
[24] E. Rips, Y. Segev, “Torsion-free groups without unique product property”, J. Algebra, 108 (1987), 116–126 | DOI | MR | Zbl
[25] S. D. Brodskii, “Uravneniya nad gruppami i gruppy s odnim opredelyayuschim sootnosheniem”, Sib. matem. zhurn., 25:2 (1984), 84–103 | MR | Zbl
[26] B. H. Neumann, “A problem of Paul Erdős on groups”, J. Austral. Math. Soc. Ser. A, 21:4 (1976), 467–472 | DOI | MR | Zbl
[27] J. Howie, “The solution of length three equations over groups”, Proc. Edinburgh Math. Soc. (2), 26 (1983), 89–96 | DOI | MR | Zbl