Basis properties of a spectral
Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1467-1487

Voir la notice de l'article provenant de la source Math-Net.Ru

The following boundary-value problem is considered: \begin{gather*} y^{(4)}(x)-(q(x){y'}(x))'=\lambda y(x),\qquad 0, \\ y(0)=y'(0)=y''(l)=0, \qquad (a\lambda+b)y(l)=(c\lambda+d)Ty(l), \end{gather*} where $\lambda$ is the spectral parameter; $Ty\equiv y'''-qy'$; $q(x)$ is a strictly positive absolutely continuous function on $[0,l]$; $a$, $b$, $c$, and $d$ are real constants such that $bc-ad>0$. The oscillation properties of eigenfunctions are studied and asymptotic formulae for eigenvalues and eigenfunctions are deduced. The basis properties in $L_p(0,l)$, $1$, of the system of eigenfunctions are investigated. Bibliography: 20 titles.
@article{SM_2006_197_10_a4,
     author = {N. B. Kerimov and Z. S. Aliyev},
     title = {Basis properties of a spectral},
     journal = {Sbornik. Mathematics},
     pages = {1467--1487},
     publisher = {mathdoc},
     volume = {197},
     number = {10},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_10_a4/}
}
TY  - JOUR
AU  - N. B. Kerimov
AU  - Z. S. Aliyev
TI  - Basis properties of a spectral
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1467
EP  - 1487
VL  - 197
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_10_a4/
LA  - en
ID  - SM_2006_197_10_a4
ER  - 
%0 Journal Article
%A N. B. Kerimov
%A Z. S. Aliyev
%T Basis properties of a spectral
%J Sbornik. Mathematics
%D 2006
%P 1467-1487
%V 197
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2006_197_10_a4/
%G en
%F SM_2006_197_10_a4
N. B. Kerimov; Z. S. Aliyev. Basis properties of a spectral. Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1467-1487. http://geodesic.mathdoc.fr/item/SM_2006_197_10_a4/