Basis properties of a spectral
Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1467-1487 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The following boundary-value problem is considered: \begin{gather*} y^{(4)}(x)-(q(x){y'}(x))'=\lambda y(x),\qquad 0<x<l, \\ y(0)=y'(0)=y''(l)=0, \qquad (a\lambda+b)y(l)=(c\lambda+d)Ty(l), \end{gather*} where $\lambda$ is the spectral parameter; $Ty\equiv y'''-qy'$; $q(x)$ is a strictly positive absolutely continuous function on $[0,l]$; $a$, $b$, $c$, and $d$ are real constants such that $bc-ad>0$. The oscillation properties of eigenfunctions are studied and asymptotic formulae for eigenvalues and eigenfunctions are deduced. The basis properties in $L_p(0,l)$, $1, of the system of eigenfunctions are investigated. Bibliography: 20 titles.
@article{SM_2006_197_10_a4,
     author = {N. B. Kerimov and Z. S. Aliyev},
     title = {Basis properties of a spectral},
     journal = {Sbornik. Mathematics},
     pages = {1467--1487},
     year = {2006},
     volume = {197},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_10_a4/}
}
TY  - JOUR
AU  - N. B. Kerimov
AU  - Z. S. Aliyev
TI  - Basis properties of a spectral
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1467
EP  - 1487
VL  - 197
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_10_a4/
LA  - en
ID  - SM_2006_197_10_a4
ER  - 
%0 Journal Article
%A N. B. Kerimov
%A Z. S. Aliyev
%T Basis properties of a spectral
%J Sbornik. Mathematics
%D 2006
%P 1467-1487
%V 197
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2006_197_10_a4/
%G en
%F SM_2006_197_10_a4
N. B. Kerimov; Z. S. Aliyev. Basis properties of a spectral. Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1467-1487. http://geodesic.mathdoc.fr/item/SM_2006_197_10_a4/

[1] S. V. Meleshko, Yu. V. Pokornyi, “Ob odnoi vibratsionnoi kraevoi zadache”, Differents. uravneniya, 23:8 (1987), 1466–1467 | Zbl

[2] G. H. Handelman, J. B. Keller, “Small vibrations of a slightly stiff pendulum”, Proc. 4th U.S. Natl. Congr. Appl. Mech., vol. 1 (Univ. California, Berkeley, CA, 1962), Amer. Soc. Mech. Engrs., New York, 1962, 195–202 | MR

[3] M. Roseau, Vibrations in mechanical systems. Analytical methods and applications, Springer-Verlag, Berlin, 1987 | MR | Zbl

[4] C. T. Fulton, “Two-point boundary value problems with eigenvalue parameter in the boundary conditions”, Math. Z., 133:4 (1973), 301–312 | DOI | MR | Zbl

[5] H. J. Ahn, “Vibrations of a pendulum consisting of a bob suspended from a wire”, Quart. Appl. Math., 39:1 (1981), 109–117 | MR | Zbl

[6] A. A. Shkalikov, “Kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii s parametrom v granichnykh usloviyakh”, Tr. sem. im. I. G. Petrovskogo, 9, 1983, 190–229 | MR | Zbl

[7] M. R. Racheva, “Bounds for the principial eigenvalue of a nonhomogenious bar with a tip mass”, C. R. Acad. Bulgare Sci., 54:11 (2001), 23–26 | MR | Zbl

[8] N. Yu. Kapustin, E. I. Moiseev, “O spektralnoi zadache iz teorii parabolo-giperbolicheskogo uravneniya teploprovodnosti”, Dokl. RAN, 352:4 (1997), 451–454 | MR | Zbl

[9] N. Yu. Kapustin, “Ostsillyatsionnye svoistva reshenii odnoi nesamosopryazhennoi spektralnoi zadachi so spektralnym parametrom v granichnom uslovii”, Differents. uravneniya, 35:8 (1999), 1024–1027 | MR | Zbl

[10] N. Yu. Kapustin, E. I. Moiseev, “O bazisnosti v prostranstve $L_p$ sistem sobstvennykh funktsii, otvechayuschikh dvum zadacham so spektralnym parametrom v granichnom uslovii”, Differents. uravneniya, 36:10 (2000), 1357–1360 | MR | Zbl

[11] N. Yu. Kapustin, E. I. Moiseev, “Ob osobennostyakh kornevogo prostranstva odnoi spektralnoi zadachi so spektralnym parametrom v granichnom uslovii”, Dokl. RAN, 385:1 (2002), 20–24 | MR | Zbl

[12] N. B. Kerimov, V. S. Mirzoev, “O bazisnykh svoistvakh odnoi spektralnoi zadachi so spektralnym parametrom v granichnom uslovii”, Sib. matem. zhurn., 44:5 (2003), 1041–1045 | MR | Zbl

[13] D. O. Banks, G. J. Kurowski, “A Prüfer transformation for the equation of a vibrating beam subject to axial forces”, J. Differential Equations, 24:1 (1977), 57–74 | DOI | MR | Zbl

[14] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, Fizmatlit, M., 1969 | MR | Zbl

[15] R. Kurant, D. Gilbert, Metody matematicheskoi fiziki, t. I, Gostekhizdat, M., L., 1951 | MR | Zbl

[16] H. E. Benzinger, “The $L^p$ behavior of eigenfunction expansion”, Trans. Amer. Math. Soc., 174 (1972), 333–344 | DOI | MR | Zbl

[17] A. M. Gomilko, G. V. Radzievskii, “Ekvivalentnost v $L_p(0,1)$ sistemy $e^{i2\pi kx}$ ($k=0,\pm1,\pm2,\dots$) i sistemy sobstvennykh funktsii obyknovennogo funktsionalno-differentsialnogo operatora”, Matem. zametki, 49:1 (1991), 47–55 | MR | Zbl

[18] S. Kachmazh, G. Shteingauz, Teoriya ortogonalnykh ryadov, GIFML, M., 1958 | MR | Zbl

[19] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, Nauka, M., 1984 | MR | Zbl

[20] A. Zigmund, Trigonometricheskie ryady, t. II, Mir, M., 1965 | MR | MR | Zbl