Basis properties of a spectral
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1467-1487
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The following boundary-value problem is considered:
\begin{gather*}
y^{(4)}(x)-(q(x){y'}(x))'=\lambda y(x),\qquad 0,
\\
y(0)=y'(0)=y''(l)=0, \qquad
(a\lambda+b)y(l)=(c\lambda+d)Ty(l),
\end{gather*}
where $\lambda$ is the spectral parameter;
$Ty\equiv y'''-qy'$; $q(x)$ is a strictly positive absolutely
continuous function on $[0,l]$; $a$, $b$, $c$, and $d$ are
real constants such that
$bc-ad>0$. The oscillation properties of eigenfunctions are
studied and asymptotic formulae for eigenvalues and
eigenfunctions are deduced. The basis properties in $L_p(0,l)$, $1$, of the
system of  eigenfunctions are investigated.
Bibliography: 20  titles.
			
            
            
            
          
        
      @article{SM_2006_197_10_a4,
     author = {N. B. Kerimov and Z. S. Aliyev},
     title = {Basis properties of a spectral},
     journal = {Sbornik. Mathematics},
     pages = {1467--1487},
     publisher = {mathdoc},
     volume = {197},
     number = {10},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_10_a4/}
}
                      
                      
                    N. B. Kerimov; Z. S. Aliyev. Basis properties of a spectral. Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1467-1487. http://geodesic.mathdoc.fr/item/SM_2006_197_10_a4/
