@article{SM_2006_197_10_a3,
author = {I. V. Karzhemanov},
title = {Semiampleness theorem for weak log {Fano} varieties},
journal = {Sbornik. Mathematics},
pages = {1459--1465},
year = {2006},
volume = {197},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_10_a3/}
}
I. V. Karzhemanov. Semiampleness theorem for weak log Fano varieties. Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1459-1465. http://geodesic.mathdoc.fr/item/SM_2006_197_10_a3/
[1] K. Matsuki, Introduction to the Mori program, Springer-Verlag, New York, 2002 | MR | Zbl
[2] Y. Kawamata, K. Matsuda, K. Matsuki, “Introduction to the minimal model problem”, Algebraic geometry (Sendai, 1985), Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 283–360 | MR | Zbl
[3] V. V. Shokurov, “Complements on surfaces”, J. Math. Sci. (New York), 102:2 (2000), 3876–3932 | DOI | MR | Zbl
[4] I. Yu. Fedorov, S. A. Kudryavtsev, $\mathbb Q$-Complements on log surfaces, arXiv: math.AG/0311325
[5] Yu. G. Prokhorov, Lectures on complements on log surfaces, MSJ Mem., 10, Math. Soc. Japan, Tokyo, 2001 | MR | Zbl
[6] J. Kollár, “Singularities of pairs”, Algebraic geometry, Proceedings of the Summer Research Institute (Santa Cruz, CA, July 9–29, 1995), Proc. Sympos. Pure Math., 62, Amer. Math. Soc., Providence, RI, 1997, 221–287 | MR | Zbl
[7] J. Kollár (ed.), Flips and abundance for algebraic threefolds, Papers from the Second Summer Seminar on Algebraic Geometry (University of Utah, Salt Lake City, UT, 1991), Astérisque, 211, Soc. Math. France, Paris, 1992 | MR | Zbl
[8] S. Kleiman, “Toward a numerical theory of ampleness”, Ann. of Math. (2), 84:3 (1966), 293–344 | DOI | MR | Zbl