Semiampleness theorem for weak log Fano varieties
Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1459-1465
Voir la notice de l'article provenant de la source Math-Net.Ru
The semiampleness of the divisor $-(K_X+S)$ is proved for a pair $(X,S)$
with purely log terminal $\mathbb Q$-factorial singularities, where $X$
is a three-dimensional normal projective algebraic variety and $S\subset X$
is a normal surface such that the divisor $-(K_X+S)$ is nef and big.
Bibliography: 8 titles.
@article{SM_2006_197_10_a3,
author = {I. V. Karzhemanov},
title = {Semiampleness theorem for weak log {Fano} varieties},
journal = {Sbornik. Mathematics},
pages = {1459--1465},
publisher = {mathdoc},
volume = {197},
number = {10},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_10_a3/}
}
I. V. Karzhemanov. Semiampleness theorem for weak log Fano varieties. Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1459-1465. http://geodesic.mathdoc.fr/item/SM_2006_197_10_a3/