Semiampleness theorem for weak log Fano varieties
Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1459-1465

Voir la notice de l'article provenant de la source Math-Net.Ru

The semiampleness of the divisor $-(K_X+S)$ is proved for a pair $(X,S)$ with purely log terminal $\mathbb Q$-factorial singularities, where $X$ is a three-dimensional normal projective algebraic variety and $S\subset X$ is a normal surface such that the divisor $-(K_X+S)$ is nef and big. Bibliography: 8 titles.
@article{SM_2006_197_10_a3,
     author = {I. V. Karzhemanov},
     title = {Semiampleness theorem for weak log {Fano} varieties},
     journal = {Sbornik. Mathematics},
     pages = {1459--1465},
     publisher = {mathdoc},
     volume = {197},
     number = {10},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_10_a3/}
}
TY  - JOUR
AU  - I. V. Karzhemanov
TI  - Semiampleness theorem for weak log Fano varieties
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1459
EP  - 1465
VL  - 197
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_10_a3/
LA  - en
ID  - SM_2006_197_10_a3
ER  - 
%0 Journal Article
%A I. V. Karzhemanov
%T Semiampleness theorem for weak log Fano varieties
%J Sbornik. Mathematics
%D 2006
%P 1459-1465
%V 197
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2006_197_10_a3/
%G en
%F SM_2006_197_10_a3
I. V. Karzhemanov. Semiampleness theorem for weak log Fano varieties. Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1459-1465. http://geodesic.mathdoc.fr/item/SM_2006_197_10_a3/