Semiampleness theorem for weak log Fano varieties
Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1459-1465 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The semiampleness of the divisor $-(K_X+S)$ is proved for a pair $(X,S)$ with purely log terminal $\mathbb Q$-factorial singularities, where $X$ is a three-dimensional normal projective algebraic variety and $S\subset X$ is a normal surface such that the divisor $-(K_X+S)$ is nef and big. Bibliography: 8 titles.
@article{SM_2006_197_10_a3,
     author = {I. V. Karzhemanov},
     title = {Semiampleness theorem for weak log {Fano} varieties},
     journal = {Sbornik. Mathematics},
     pages = {1459--1465},
     year = {2006},
     volume = {197},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_10_a3/}
}
TY  - JOUR
AU  - I. V. Karzhemanov
TI  - Semiampleness theorem for weak log Fano varieties
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1459
EP  - 1465
VL  - 197
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_10_a3/
LA  - en
ID  - SM_2006_197_10_a3
ER  - 
%0 Journal Article
%A I. V. Karzhemanov
%T Semiampleness theorem for weak log Fano varieties
%J Sbornik. Mathematics
%D 2006
%P 1459-1465
%V 197
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2006_197_10_a3/
%G en
%F SM_2006_197_10_a3
I. V. Karzhemanov. Semiampleness theorem for weak log Fano varieties. Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1459-1465. http://geodesic.mathdoc.fr/item/SM_2006_197_10_a3/

[1] K. Matsuki, Introduction to the Mori program, Springer-Verlag, New York, 2002 | MR | Zbl

[2] Y. Kawamata, K. Matsuda, K. Matsuki, “Introduction to the minimal model problem”, Algebraic geometry (Sendai, 1985), Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 283–360 | MR | Zbl

[3] V. V. Shokurov, “Complements on surfaces”, J. Math. Sci. (New York), 102:2 (2000), 3876–3932 | DOI | MR | Zbl

[4] I. Yu. Fedorov, S. A. Kudryavtsev, $\mathbb Q$-Complements on log surfaces, arXiv: math.AG/0311325

[5] Yu. G. Prokhorov, Lectures on complements on log surfaces, MSJ Mem., 10, Math. Soc. Japan, Tokyo, 2001 | MR | Zbl

[6] J. Kollár, “Singularities of pairs”, Algebraic geometry, Proceedings of the Summer Research Institute (Santa Cruz, CA, July 9–29, 1995), Proc. Sympos. Pure Math., 62, Amer. Math. Soc., Providence, RI, 1997, 221–287 | MR | Zbl

[7] J. Kollár (ed.), Flips and abundance for algebraic threefolds, Papers from the Second Summer Seminar on Algebraic Geometry (University of Utah, Salt Lake City, UT, 1991), Astérisque, 211, Soc. Math. France, Paris, 1992 | MR | Zbl

[8] S. Kleiman, “Toward a numerical theory of ampleness”, Ann. of Math. (2), 84:3 (1966), 293–344 | DOI | MR | Zbl