Continuous dependence on parameters of solutions to
Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1435-1457 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The definition of a Volterra operator on a system of equivalence relations is presented. For an appropriately selected system of relations this yields the well-known definitions treating the evolution property, the causality of operators, including Tychonoff's classical definition. The existence, the uniqueness, the extendability of local solutions to non-linear equations with Volterra operators are considered, estimates of the domains of definition of solutions are obtained, and theorems on the continuous dependence of solutions on the parameters are proved. The results so obtained are applied to the analysis of the well-posedness and to the approximate solution of the Cauchy problem for functional differential equations. Bibliography: 21 titles.
@article{SM_2006_197_10_a2,
     author = {E. S. Zhukovskii},
     title = {Continuous dependence on parameters of solutions to},
     journal = {Sbornik. Mathematics},
     pages = {1435--1457},
     year = {2006},
     volume = {197},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_10_a2/}
}
TY  - JOUR
AU  - E. S. Zhukovskii
TI  - Continuous dependence on parameters of solutions to
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1435
EP  - 1457
VL  - 197
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_10_a2/
LA  - en
ID  - SM_2006_197_10_a2
ER  - 
%0 Journal Article
%A E. S. Zhukovskii
%T Continuous dependence on parameters of solutions to
%J Sbornik. Mathematics
%D 2006
%P 1435-1457
%V 197
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2006_197_10_a2/
%G en
%F SM_2006_197_10_a2
E. S. Zhukovskii. Continuous dependence on parameters of solutions to. Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1435-1457. http://geodesic.mathdoc.fr/item/SM_2006_197_10_a2/

[1] A. N. Tikhonov, “O funktsionalnykh uravneniyakh tipa Volterra i ikh primeneniyakh k nekotorym zadacham matematicheskoi fiziki”, Byul. Mosk. un-ta. Sekts. A. Ser. matem. i mekh., 1:8 (1938), 1–25 | MR | Zbl

[2] L. Tonelli, “Sulle equazioni funzionali del tipo di Volterra”, Bull. Calcutta Math. Soc., 20 (1930), 31–48 | Zbl

[3] D. Graffi, “Sopra una equazione funzionali e la sua applicazione a un problema di fisica ereditaria”, Ann. Mat. Pura. Appl. IV, Ser. 9, 1931, 143–160; 161–179 | DOI | MR | Zbl

[4] S. Cinquini, “Sulle equazioni funzionali del tipo di Volterra”, Atti Accad. Naz. Lincei Rend. (6), 17 (1933), 616–621 | Zbl

[5] V. I. Sumin, “Funktsionalno-operatornye volterrovy uravneniya v teorii optimalnogo upravleniya raspredelennymi sistemami”, Dokl. AN SSSR, 305:5 (1989), 1056–1059 | MR | Zbl

[6] N. V. Azbelev, L. M. Berezanskii, L. F. Rakhmatullina, “O lineinom funktsionalno-differentsialnom uravnenii evolyutsionnogo tipa”, Differents. uravneniya, 13:11 (1977), 1915–1925 | MR | Zbl

[7] V. G. Kurbatov, “Lineinye funktsionalno-differentsialnye uravneniya neitralnogo tipa i zapazdyvayuschii spektr”, Sib. matem. zhurn., 16:3 (1975), 538–550 | MR | Zbl

[8] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl

[9] E. S. Zhukovskii, Lineinye evolyutsionnye funktsionalno-differentsialnye uravneniya v banakhovom prostranstve, Izd-vo TGU, Tambov, 2003

[10] N. V. Azbelev, V. P. Maksimov, L. F. Rakhmatullina, Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR | Zbl

[11] G. M. Vainiko, “Regulyarnaya skhodimost operatorov i priblizhennoe reshenie uravnenii”, Itogi nauki i tekhniki. Matematicheskii analiz, 16, VINITI, M., 1979, 5–53 | MR

[12] Z. Artstein, “Continuous dependence of solutions of operator equations. I”, Trans. Amer. Math. Soc., 231:1 (1977), 143–166 | DOI | MR | Zbl

[13] E. S. Zhukovskii, “Nelineinoe uravnenie Volterra v banakhovom funktsionalnom prostranstve”, Izv. vuzov. Ser. matem., 2005, no. 10, 17–28 | MR

[14] V. P. Maksimov, “O predelnom perekhode v kraevykh zadachakh dlya funktsionalno-differentsialnykh uravnenii”, Differents. uravneniya, 17:11 (1981), 1984–1994 | MR | Zbl

[15] N. V. Azbelev, V. P. Maksimov, L. F. Rakhmatullina, Elementy sovremennoi teorii funktsionalno-differentsialnykh uravnenii. Metody i prilozheniya, Institut kompyuternykh issledovanii, M., 2002

[16] E. S. Zhukovskii, “Neravenstva Volterra v funktsionalnykh prostranstvakh”, Matem. sb., 195:9 (2004), 3–18 | MR | Zbl

[17] M. A. Krasnoselskii, P. P. Zabreiko, E. I. Pustyrnik, P. E. Sobolevskii, Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR | Zbl

[18] Ya. Kurtsveil, “O nepreryvnoi zavisimosti ot parametra v teorii obyknovennykh differentsialnykh uravnenii i ob obobschenii ponyatiya differentsialnogo uravneniya”, UMN, 12:5 (1957), 257–259

[19] R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina, B. N. Sadovskii, “Teoriya uravneniya neitralnogo tipa”, Itogi nauki i tekhniki. Matematicheskii analiz, 19, VINITI, M., 1982, 55–126 | MR | Zbl

[20] S. G. Krein (red.), Funktsionalnyi analiz, Nauka, M., 1972 | MR | Zbl

[21] N. Danford, Dzh. Shvarts, Lineinye operatory. T. 1. Obschaya teoriya, IL, M., 1962 | MR | MR | Zbl