Singular points of meromorphic functions defined by their expansion
Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1405-1416 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Leighton's well-known conjecture about singular points of a meromorphic function defined by its expansion in a general $C$-fraction is discussed. A theorem proved in the paper yields, in particular, this conjecture for an arbitrary non-decreasing sequence of exponents $\alpha_k\to\infty$. Bibliography: 7 titles.
@article{SM_2006_197_10_a0,
     author = {A. A. Gonchar},
     title = {Singular points of meromorphic functions defined by their expansion},
     journal = {Sbornik. Mathematics},
     pages = {1405--1416},
     year = {2006},
     volume = {197},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_10_a0/}
}
TY  - JOUR
AU  - A. A. Gonchar
TI  - Singular points of meromorphic functions defined by their expansion
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1405
EP  - 1416
VL  - 197
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_10_a0/
LA  - en
ID  - SM_2006_197_10_a0
ER  - 
%0 Journal Article
%A A. A. Gonchar
%T Singular points of meromorphic functions defined by their expansion
%J Sbornik. Mathematics
%D 2006
%P 1405-1416
%V 197
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2006_197_10_a0/
%G en
%F SM_2006_197_10_a0
A. A. Gonchar. Singular points of meromorphic functions defined by their expansion. Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1405-1416. http://geodesic.mathdoc.fr/item/SM_2006_197_10_a0/

[1] H. S. Wall, Analytic theory of continued fractions, Van Nostrand Company, New York, NY, 1948 | MR | Zbl

[2] U. Dzhouns, V. Tron, Nepreryvnye drobi. Analiticheskaya teoriya i prilozheniya, Mir, M., 1985 | MR | MR | Zbl

[3] W. T. Scott, H. S. Wall, “Continued fraction expansions for arbitrary power series”, Ann. of Math. (2), 41:2 (1940), 328–349 | DOI | MR | Zbl

[4] W. J. Thron, “Twin convergence regions for continued fractions $b_0+K(1/b_n)$. II”, Amer. J. Math., 71:1 (1949), 112–120 | DOI | MR | Zbl

[5] Dzh. L. Uolsh, Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi oblasti, IL, M., 1961 | MR | MR | Zbl

[6] A. A. Gonchar, K. N. Lungu, “Polyusy diagonalnykh approksimatsii Pade i analiticheskoe prodolzhenie funktsii”, Matem. sb., 111(153):2 (1980), 279–292 | MR | Zbl

[7] Dzh. Beiker, P. Greivs-Morris, Approksimatsii Pade, Mir, M., 1986 | MR | MR | Zbl