Singular points of meromorphic functions defined by their expansion
Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1405-1416
Voir la notice de l'article provenant de la source Math-Net.Ru
Leighton's well-known conjecture about singular
points of a meromorphic function defined by its expansion
in a general $C$-fraction is discussed. A theorem proved in the paper
yields, in particular, this conjecture for an arbitrary non-decreasing
sequence of exponents $\alpha_k\to\infty$.
Bibliography: 7 titles.
@article{SM_2006_197_10_a0,
author = {A. A. Gonchar},
title = {Singular points of meromorphic functions defined by their expansion},
journal = {Sbornik. Mathematics},
pages = {1405--1416},
publisher = {mathdoc},
volume = {197},
number = {10},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_10_a0/}
}
A. A. Gonchar. Singular points of meromorphic functions defined by their expansion. Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1405-1416. http://geodesic.mathdoc.fr/item/SM_2006_197_10_a0/