Singular points of meromorphic functions defined by their expansion
Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1405-1416

Voir la notice de l'article provenant de la source Math-Net.Ru

Leighton's well-known conjecture about singular points of a meromorphic function defined by its expansion in a general $C$-fraction is discussed. A theorem proved in the paper yields, in particular, this conjecture for an arbitrary non-decreasing sequence of exponents $\alpha_k\to\infty$. Bibliography: 7 titles.
@article{SM_2006_197_10_a0,
     author = {A. A. Gonchar},
     title = {Singular points of meromorphic functions defined by their expansion},
     journal = {Sbornik. Mathematics},
     pages = {1405--1416},
     publisher = {mathdoc},
     volume = {197},
     number = {10},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_10_a0/}
}
TY  - JOUR
AU  - A. A. Gonchar
TI  - Singular points of meromorphic functions defined by their expansion
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1405
EP  - 1416
VL  - 197
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_10_a0/
LA  - en
ID  - SM_2006_197_10_a0
ER  - 
%0 Journal Article
%A A. A. Gonchar
%T Singular points of meromorphic functions defined by their expansion
%J Sbornik. Mathematics
%D 2006
%P 1405-1416
%V 197
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2006_197_10_a0/
%G en
%F SM_2006_197_10_a0
A. A. Gonchar. Singular points of meromorphic functions defined by their expansion. Sbornik. Mathematics, Tome 197 (2006) no. 10, pp. 1405-1416. http://geodesic.mathdoc.fr/item/SM_2006_197_10_a0/