Deformations of classical Lie algebras with homogeneous root system in characteristic two. I
Sbornik. Mathematics, Tome 196 (2005) no. 9, pp. 1371-1402 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Spaces of local deformations of classical Lie algebras with a homogeneous root system over a field $K$ of characteristic 2 are studied. By a classical Lie algebra over a field $K$ we mean the Lie algebra of a simple algebraic Lie group or its quotient algebra by the centre. The description of deformations of Lie algebras is interesting in connection with the classification of the simple Lie algebras.
@article{SM_2005_196_9_a5,
     author = {N. G. Chebochko},
     title = {Deformations of classical {Lie} algebras with homogeneous root system in {characteristic~two.~I}},
     journal = {Sbornik. Mathematics},
     pages = {1371--1402},
     year = {2005},
     volume = {196},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_9_a5/}
}
TY  - JOUR
AU  - N. G. Chebochko
TI  - Deformations of classical Lie algebras with homogeneous root system in characteristic two. I
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 1371
EP  - 1402
VL  - 196
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_9_a5/
LA  - en
ID  - SM_2005_196_9_a5
ER  - 
%0 Journal Article
%A N. G. Chebochko
%T Deformations of classical Lie algebras with homogeneous root system in characteristic two. I
%J Sbornik. Mathematics
%D 2005
%P 1371-1402
%V 196
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2005_196_9_a5/
%G en
%F SM_2005_196_9_a5
N. G. Chebochko. Deformations of classical Lie algebras with homogeneous root system in characteristic two. I. Sbornik. Mathematics, Tome 196 (2005) no. 9, pp. 1371-1402. http://geodesic.mathdoc.fr/item/SM_2005_196_9_a5/

[1] Kostrikin A. I., “Parametricheskoe semeistvo prostykh algebr Li”, Izv. AN SSSR. Ser. matem., 34 (1970), 744–756 | MR | Zbl

[2] Dzhumadildaev A. S., “K deformatsiyam klassicheskikh prostykh algebr Li”, UMN, 31:3 (189) (1976), 211–212 | MR | Zbl

[3] Kostrikin A. I., Kuznetsov M. I., “O deformatsiyakh klassicheskikh algebr Li kharakteristiki tri”, Dokl. RAN, 343:3 (1995), 299–301 | MR | Zbl

[4] Rudakov A. N., “Deformatsii prostykh algebr Li”, Izv. AN SSSR. Ser. matem., 35 (1971), 1113–1119 | MR | Zbl

[5] Kuznetsov M. I., Chebochko N. G., “Deformatsii klassicheskikh algebr Li”, Matem. sb., 191:8 (2000), 69–88 | MR | Zbl

[6] Kirillov S. A., Kuznetsov M. I., Chebochko N. G., “O deformatsiyakh algebry Li tipa $G_2$ kharakteristiki tri”, Izv. vuzov. Ser. matem., 2000, no. 3 (454), 33–38 | MR | Zbl

[7] Shen Guangyu, “Variations of the classical Lie algebra $G_2$ in low characteristics”, Nova J. Alg. Geom., 2:3 (1993), 217–243 | MR | Zbl

[8] Frohardt D. E., Griess R. L., Jr., “Automorphisms of modular Lie algebras”, Nova J. Alg. Geom., 1:4 (1992), 339–345 | MR | Zbl

[9] Burbaki N., Gruppy i algebry Li, gl. IV–VI, Mir, M., 1972 | MR | Zbl

[10] Steinberg R., Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl

[11] Gisharde A., Kogomologii topologicheskikh grupp i algebr Li, Mir, M., 1984 | MR

[12] Burbaki N., Gruppy i algebry Li, gl. VII–VIII, Mir, M., 1978 | MR

[13] Kostrikin A. I., Shafarevich I. R., “Graduirovannye algebry Li konechnoi kharakteristiki”, Izv. AN SSSR. Ser. matem., 33 (1969), 251–322 | MR | Zbl