@article{SM_2005_196_9_a3,
author = {A. Yu. Popov and I. V. Tikhonov},
title = {Exponential solubility classes in a problem for the~heat equation with a~non-local condition for the~time averages},
journal = {Sbornik. Mathematics},
pages = {1319--1348},
year = {2005},
volume = {196},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2005_196_9_a3/}
}
TY - JOUR AU - A. Yu. Popov AU - I. V. Tikhonov TI - Exponential solubility classes in a problem for the heat equation with a non-local condition for the time averages JO - Sbornik. Mathematics PY - 2005 SP - 1319 EP - 1348 VL - 196 IS - 9 UR - http://geodesic.mathdoc.fr/item/SM_2005_196_9_a3/ LA - en ID - SM_2005_196_9_a3 ER -
%0 Journal Article %A A. Yu. Popov %A I. V. Tikhonov %T Exponential solubility classes in a problem for the heat equation with a non-local condition for the time averages %J Sbornik. Mathematics %D 2005 %P 1319-1348 %V 196 %N 9 %U http://geodesic.mathdoc.fr/item/SM_2005_196_9_a3/ %G en %F SM_2005_196_9_a3
A. Yu. Popov; I. V. Tikhonov. Exponential solubility classes in a problem for the heat equation with a non-local condition for the time averages. Sbornik. Mathematics, Tome 196 (2005) no. 9, pp. 1319-1348. http://geodesic.mathdoc.fr/item/SM_2005_196_9_a3/
[1] Holmgren E., “Sur les solutions quasianalytiques de l'équation de la chaleur”, Ark. Mat., 18:9 (1924), 1–9
[2] Tychonoff A., “Théorèmes d'unicité pour l'équation de la chaleur”, Matem. sb., 42:2 (1935), 199–216 | Zbl
[3] Täcklind S., “Sur les classes quasianalytiques des solutions des équations aux dérivées partielles du type parabolique”, Nova Acta Reg. Soc. Sci. Upsaliensis. Ser. IV, 10:3 (1936), 1–57 | Zbl
[4] Gelfand I. M., Shilov G. E., Obobschennye funktsii. Vyp 3. Nekotorye voprosy teorii differentsialnykh uravnenii, GIFML, M., 1958
[5] Tikhonov I. V., “Teoremy edinstvennosti v lineinykh nelokalnykh zadachakh dlya abstraktnykh differentsialnykh uravnenii”, Izv. RAN. Ser. matem., 67:2 (2003), 133–166 | MR | Zbl
[6] Popov A. Yu., Tikhonov I. V., “Eksponentsialnye klassy edinstvennosti v zadachakh teploprovodnosti”, Dokl. RAN, 389:4 (2003), 465–467 | MR | Zbl
[7] Popov A. Yu., Tikhonov I. V., “Klassy edinstvennosti v nelokalnoi po vremeni zadache dlya uravneniya teploprovodnosti i kompleksnye sobstvennye funktsii operatora Laplasa”, Differents. uravneniya, 40:3 (2004), 396–405 | MR | Zbl
[8] Volevich L. R., Gindikin S. G., Obobschennye funktsii i uravneniya v svertkakh, Fizmatlit, M., 1994 | MR | Zbl
[9] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR
[10] Privalov I. I., Subgarmonicheskie funktsii, GRTTL, M., 1937
[11] Gyunter N. M., Teoriya potentsiala i ee primenenie k osnovnym zadacham matematicheskoi fiziki, GITTL, M., 1953 | MR
[12] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. T. 2. Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974
[13] Abramovits M., Stigan I. (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR
[14] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Dopolnitelnye glavy, Nauka, M., 1986 | MR
[15] Matematicheskaya entsiklopediya, 1. A–G, SE, M., 1977
[16] Vatson G. N., Teoriya besselevykh funktsii. Chast pervaya, IL, M., 1949
[17] Fedoryuk M. V., Asimptotika: Integraly i ryady, Nauka, M., 1987 | MR