The index of multiplicative groups of algebraic numbers
Sbornik. Mathematics, Tome 196 (2005) no. 9, pp. 1307-1318 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Fix several non-zero elements of an algebraic field with linearly independent logarithms. Consider the set of elements of the field whose logarithms can be expressed in terms of the logarithms of the fixed numbers using rational coefficients. The corresponding vectors of coefficients make up a lattice with the standard integral lattice as a finite-index sublattice. An improved upper bound for this index is given in terms of the extended logarithmic heights of the quantities involved. On the way an estimate for the coefficients in integer linear relations between the logarithms of algebraic numbers is obtained.
@article{SM_2005_196_9_a2,
     author = {E. M. Matveev},
     title = {The index of multiplicative groups of algebraic numbers},
     journal = {Sbornik. Mathematics},
     pages = {1307--1318},
     year = {2005},
     volume = {196},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_9_a2/}
}
TY  - JOUR
AU  - E. M. Matveev
TI  - The index of multiplicative groups of algebraic numbers
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 1307
EP  - 1318
VL  - 196
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_9_a2/
LA  - en
ID  - SM_2005_196_9_a2
ER  - 
%0 Journal Article
%A E. M. Matveev
%T The index of multiplicative groups of algebraic numbers
%J Sbornik. Mathematics
%D 2005
%P 1307-1318
%V 196
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2005_196_9_a2/
%G en
%F SM_2005_196_9_a2
E. M. Matveev. The index of multiplicative groups of algebraic numbers. Sbornik. Mathematics, Tome 196 (2005) no. 9, pp. 1307-1318. http://geodesic.mathdoc.fr/item/SM_2005_196_9_a2/

[1] Lehmer D. H., “Factorization of certain cyclotomic functions”, Ann. of Math. (2), 34:2 (1933), 461–479 | DOI | MR | Zbl

[2] Smyth C. J., “On the product of the conjugates outside the unit circle of an algebraic integer”, Bull. London Math. Soc., 3 (1971), 169–175 | DOI | MR | Zbl

[3] Blanksby P. E., Montgomery H. L., “Algebraic integers near the unit circle”, Acta Arith., 18 (1971), 355–369 | MR | Zbl

[4] Dobrowolski E., “On a question of Lehmer and the number of irreducible factors of a polynomial”, Acta Arith., 34 (1979), 391–401 | MR | Zbl

[5] Voutier P. M., “An effective lower bound for the height of algebraic numbers”, Acta Arith., 74 (1996), 81–95 | MR | Zbl

[6] Matveev E. M., “O posledovatelnykh minimumakh rasshirennoi logarifmicheskoi vysoty algebraicheskikh chisel”, Matem. sb., 190:3 (1999), 89–108 | MR | Zbl

[7] Matveev E. M., “Yavnaya nizhnyaya otsenka odnorodnoi ratsionalnoi lineinoi formy ot logarifmov algebraicheskikh chisel. II”, Izv. RAN. Ser. matem., 64:6 (2000), 125–180 | MR | Zbl

[8] Amoroso F., David S., “Le problème de Lehmer en dimension supériore”, J. Reine Angew. Math., 513 (1999), 145–179 | MR | Zbl

[9] Kassels Dzh. V. S., Vvedenie v geometriyu chisel, Mir, M., 1965 | MR

[10] Matveev E. M., “Yavnaya nizhnyaya otsenka odnorodnoi ratsionalnoi lineinoi formy ot logarifmov algebraicheskikh chisel”, Izv. RAN. Ser. matem., 62:4 (1998), 81–136 | MR | Zbl

[11] Waldschmidt M., “A lower bound for linear forms in logarithms”, Acta Arith., 37 (1980), 257–283 | MR | Zbl

[12] Matveev E. M., “O lineinykh i multiplikativnykh sootnosheniyakh”, Matem. sb., 184:4 (1993), 23–40 | Zbl

[13] Bertrand D., “Duality on tori and multiplicative dependence relations”, J. Austral. Math. Soc. Ser. A, 62 (1997), 198–216 | DOI | MR | Zbl