On the index of elliptic operators on manifolds with edges
Sbornik. Mathematics, Tome 196 (2005) no. 9, pp. 1271-1305 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Necessary and sufficient conditions for the representation of the index of elliptic operators on manifolds with edges in the form of the sum of homotopy invariants of symbols on the smooth stratum and on the edge are found. An index formula is obtained for elliptic operators on manifolds with edges under symmetry conditions with respect to the edge covariables.
@article{SM_2005_196_9_a1,
     author = {V. E. Nazaikinskii and A. Yu. Savin and B. Yu. Sternin and B.-W. Schulze},
     title = {On the index of elliptic operators on manifolds with edges},
     journal = {Sbornik. Mathematics},
     pages = {1271--1305},
     year = {2005},
     volume = {196},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_9_a1/}
}
TY  - JOUR
AU  - V. E. Nazaikinskii
AU  - A. Yu. Savin
AU  - B. Yu. Sternin
AU  - B.-W. Schulze
TI  - On the index of elliptic operators on manifolds with edges
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 1271
EP  - 1305
VL  - 196
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_9_a1/
LA  - en
ID  - SM_2005_196_9_a1
ER  - 
%0 Journal Article
%A V. E. Nazaikinskii
%A A. Yu. Savin
%A B. Yu. Sternin
%A B.-W. Schulze
%T On the index of elliptic operators on manifolds with edges
%J Sbornik. Mathematics
%D 2005
%P 1271-1305
%V 196
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2005_196_9_a1/
%G en
%F SM_2005_196_9_a1
V. E. Nazaikinskii; A. Yu. Savin; B. Yu. Sternin; B.-W. Schulze. On the index of elliptic operators on manifolds with edges. Sbornik. Mathematics, Tome 196 (2005) no. 9, pp. 1271-1305. http://geodesic.mathdoc.fr/item/SM_2005_196_9_a1/

[1] Schulze B.-W., Pseudodifferential operators on manifolds with singularities, North-Holland, Amsterdam, 1991 | MR | Zbl

[2] Savin A. Yu., Sternin B. Yu., Shultse B.-V., “Ob invariantnykh formulakh indeksa spektralnykh kraevykh zadach”, Differents. uravneniya, 35:5 (1999), 705–714 | MR | Zbl

[3] Nazaikinskii V., Schulze B.-W., Sternin B., On the homotopy classification of elliptic operators on manifolds with singularities, Preprint No99/21, Univ. Potsdam, Institut für Mathematik, Potsdam, Oktober 1999 | MR

[4] Schulze B.-W., Sternin B., Shatalov V., “On the index of differential operators on manifolds with conical singularities”, Ann. Global Anal. Geom., 16:2 (1998), 141–172 | DOI | MR | Zbl

[5] Luke G., “Pseudodifferential operators on Hilbert bundles”, J. Differential Equations, 12 (1972), 566–589 | DOI | MR | Zbl

[6] Fedosov B. V., Schulze B.-W., Tarkhanov N. N., “On the index of elliptic operators on a wedge”, J. Funct. Anal., 157 (1998), 164–209 | DOI | MR | Zbl

[7] Schrohe E., Seiler J., An analytic index formula for pseudo-differential operators on wedges, Preprint No172, Univ. Potsdam, Institut für Mathematik, Potsdam, December 1996

[8] Rozenblum G., “Regularisation of secondary characteristic classes and unusual index formulas for operator-valued symbols”, Nonlinear hyperbolic equations, spectral theory, and wavelet transformations, Oper. Theory Adv. Appl., 145, Birkhäuser, Basel, 2003, 419–437 | MR | Zbl

[9] Rozenblum G., “On some analytical index formulas related to operator-valued symbols”, Electron. J. Differential Equations, 17:1–31 (2002) | MR | Zbl

[10] Vaillant B., Index- and spectral theory for manifolds with generalized fibred cusps, Bonner Mathematische Schriften, 344, Universität Bonn Mathematisches Institut, 2001 | MR | Zbl

[11] Atiyah M., Patodi V., Singer I., “Spectral asymmetry and Riemannian geometry. I”, Math. Proc. Cambridge Philos. Soc., 77 (1975), 43–69 | DOI | MR | Zbl

[12] Lauter R., Moroianu S., “An index formula on manifolds with fibered cusp ends”, J. Geom. Anal. (to appear) | MR | Zbl

[13] Melrose R., Nistor V., Homology of pseudodifferential operators. I. Manifolds with boundary, Preprint , 1996 arxiv.ord funct-an/9606005

[14] Nazaikinskii V., Savin A., Schulze B.-W., Sternin B., Elliptic theory on singular manifolds, CRC Press, Boca Raton | MR | Zbl

[15] Nazaikinskii V., Savin A., Schulze B.-W., Sternin B., Elliptic theory on manifolds with edges. I, Preprint No2003/25, Univ. Potsdam, Institut für Mathematik, Potsdam, 2003 | MR

[16] Nazaikinskii V., Savin A., Schulze B.-W., Sternin B., Elliptic theory on manifolds with edges. II, Preprint No2004/15, Univ. Potsdam, Institut für Mathematik, Potsdam, 2004

[17] Nazaikinskii V., Savin A., Schulze B.-W., Sternin B., Elliptic theory on manifolds with nonisolated singularities. IV. Obstructions to elliptic problems on manifolds with edges, Preprint No 2002/24, Univ. Potsdam, Institut für Mathematik, Potsdam, 2002 | MR

[18] Egorov Yu., Schulze B.-W., Pseudo-differential operators, singularities, applications, Birkhäuser, Boston, 1997 | MR | Zbl

[19] Maslov V. P., Théorie des perturbations et méthod asymptotiques, Dunod, Paris, 1972 | Zbl

[20] Nazaikinskii V., Sternin B., Shatalov V., Methods of noncommutative analysis. Theory and applications. Mathematical Studies, Walter de Gruyter Publ., Berlin, 1995 | MR | Zbl

[21] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3 (1964), 53–161 | MR | Zbl

[22] Nazaikinskii V. E., Sternin B. Yu., “O printsipe lokalnosti indeksa v ellipticheskoi teorii”, Funkts. analiz i ego prilozh., 35:2 (2001), 37–52 | MR

[23] Atiyah M. F., Bott R., Patodi V. K., “On the heat equation and the index theorem”, Invent. Math., 19 (1973), 279–330 | DOI | MR | Zbl

[24] Atiyah M., Patodi V., Singer I., “Spectral asymmetry and Riemannian geometry. III”, Math. Proc. Cambridge Philos. Soc., 79 (1976), 71–99 | DOI | MR | Zbl

[25] Atiyah M. F., Singer I. M., “The index of elliptic operators. I”, Ann. of Math. (2), 87 (1968), 484–530 | DOI | MR | Zbl

[26] Savin A., Sternin B., “Index defects in the theory of spectral boundary value problems”, Aspects of boundary problems in analysis and geometry, Oper. Theory Adv. Appl., 151, Birkhäuser, Basel, 2004, 170–238 | MR | Zbl

[27] Savin A. Yu., Sternin B. Yu., “Defekty indeksa v teorii nelokalnykh kraevykh zadach i $\eta$-invariant”, Matem. sb., 195:9 (2004), 85–126 | MR | Zbl

[28] Atiyah M. F., K-theory, Addison-Wesley, Redwood City, CA, 1989 | MR | Zbl

[29] Gilkey P. B., “The eta invariant of even order operators”, Lecture Notes in Math., 1410, 1989, 202–211 | MR | Zbl

[30] Nistor V., “An index theorem for gauge-invariant families: The case of solvable groups”, Acta Math. Hungar., 99:2 (2003), 155–183 | DOI | MR | Zbl

[31] Hörmander L., The analysis of linear partial differential operators. III, Springer-Verlag, Berlin, 1985 | MR