On extensions and branching rules for modules close to completely splittable
Sbornik. Mathematics, Tome 196 (2005) no. 8, pp. 1209-1249

Voir la notice de l'article provenant de la source Math-Net.Ru

The modules $D^\lambda{\downarrow}_{\Sigma_{n-1}}$ and $D^\lambda{\uparrow}^{\Sigma_{n+1}}$ are described for certain simple $K\Sigma_n$-modules $D^\lambda$ (the completely splittable ones or close to them), where $K$ is a field of characteristic $p>0$ and $\Sigma_n$ is the symmetric group of degree $n$. This result is based on an upper bound for the dimensions of the $\operatorname{Ext}^1$-spaces between certain simple modules.
@article{SM_2005_196_8_a4,
     author = {V. V. Shchigolev},
     title = {On extensions and branching rules for modules close to completely splittable},
     journal = {Sbornik. Mathematics},
     pages = {1209--1249},
     publisher = {mathdoc},
     volume = {196},
     number = {8},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_8_a4/}
}
TY  - JOUR
AU  - V. V. Shchigolev
TI  - On extensions and branching rules for modules close to completely splittable
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 1209
EP  - 1249
VL  - 196
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_8_a4/
LA  - en
ID  - SM_2005_196_8_a4
ER  - 
%0 Journal Article
%A V. V. Shchigolev
%T On extensions and branching rules for modules close to completely splittable
%J Sbornik. Mathematics
%D 2005
%P 1209-1249
%V 196
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2005_196_8_a4/
%G en
%F SM_2005_196_8_a4
V. V. Shchigolev. On extensions and branching rules for modules close to completely splittable. Sbornik. Mathematics, Tome 196 (2005) no. 8, pp. 1209-1249. http://geodesic.mathdoc.fr/item/SM_2005_196_8_a4/