@article{SM_2005_196_8_a4,
author = {V. V. Shchigolev},
title = {On extensions and branching rules for modules close to completely splittable},
journal = {Sbornik. Mathematics},
pages = {1209--1249},
year = {2005},
volume = {196},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2005_196_8_a4/}
}
V. V. Shchigolev. On extensions and branching rules for modules close to completely splittable. Sbornik. Mathematics, Tome 196 (2005) no. 8, pp. 1209-1249. http://geodesic.mathdoc.fr/item/SM_2005_196_8_a4/
[1] Kertis Ch., Rainer I., Teoriya predstavleniya konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969 | MR
[2] Kleshchev A. S., Sheth J., “On extensions of simple modules over symmetric and algebraic groups”, J. Algebra, 221:2 (1999), 705–722 | DOI | MR | Zbl
[3] Kleshchev A. S., “On decomposition numbers and branching coefficients for symmetric and special linear groups”, Proc. London Math. Soc. (3), 75:3 (1997), 497–558 | DOI | MR | Zbl
[4] Brundan J., Kleshchev A. S., “On translation functors for general linear and symmetric groups”, Proc. London Math. Soc. (3), 80:1 (2000), 75–106 | DOI | MR | Zbl
[5] Schigolev V. V., “O nekotorykh rasshireniyakh vpolne rasscheplyaemykh modulei”, Izv. RAN. Ser. matem., 68:4 (2004), 117–150 | MR
[6] Kleshchev A. S., “Completely splittable representations of symmetric groups”, J. Algebra, 181:2 (1996), 584–592 | DOI | MR | Zbl
[7] Mullineux G., “Bijections of $p$-regular partitions and $p$-modular irreducibles of the symmetric groups”, J. London Math. Soc. (2), 20:1 (1979), 60–66 | DOI | MR | Zbl
[8] Ford B., Kleshchev A. S., “A proof of the Mullineux conjecture”, Math. Z., 226:2 (1997), 267–308 | DOI | MR | Zbl
[9] James G. D., Kerber A., The representation theory of the symmetric group, Addison-Wesley, London, 1981 | MR | Zbl
[10] Dzheims G., Teoriya predstavlenii simmetricheskoi gruppy, Mir, M., 1980
[11] Brundan J., Kleshchev A., “Modular Littlewood–Richardson coefficients”, Math. Z., 232 (1999), 287–320 | DOI | MR | Zbl
[12] Green J. A., Polynomial representations of $GL_n(K)$, Lecture Notes in Math., 830, Springer-Verlag, Berlin, 1980 | MR | Zbl
[13] Kleshchev A. S., “Branching rules for modular representations of symmetric groups. I”, J. Algebra, 178:2 (1995), 493–511 | DOI | MR | Zbl
[14] James G. D., Murphy G. E., “The determinant of the Gram matrix for a Specht module”, J. Algebra, 59:1 (1979), 222–235 | DOI | MR | Zbl
[15] Hemmer D. J., “The $\operatorname{Ext}^1$-quiver for completely splittable representations of the symmetric group”, J. Group Theory, 2001, no. 4, 401–416 | DOI | MR | Zbl
[16] Bessenrodt C., Olsson J. B., “On Mullineux symbols”, J. Combin. Theory Ser. A, 68:2 (1994), 340–360 | DOI | MR | Zbl
[17] Kleshchev A. S., Sheth J., “Corrigendum: “On extensions of simple modules over symmetric and algebraic groups””, J. Algebra, 238:2 (2001), 843–844 | DOI | MR | Zbl
[18] Kleshchev A. S., Nakano D., “On comparing the cohomology of general linear and symmetric groups”, Pacific J. Math., 201 (2001), 339–355 | MR | Zbl
[19] Jantzen J. C., Representations of algebraic groups, Pure Appl. Math., 131, Academic Press, Inc., Boston, MA, 1987 | MR | Zbl
[20] Donkin S., “On Schur algebras and related algebras. I”, J. Algebra, 104:2 (1986), 310–328 | DOI | MR | Zbl
[21] Shchigolev V. V., “On the stabilization problem for submodules of Specht modules”, J. Algebra, 251:2 (2002), 790–812 | DOI | MR | Zbl
[22] Kleshchev A. S., “Branching rules for modular representations of symmetric groups. III: Some corollaries and a problem of Mullineux”, J. London Math. Soc. (2), 54:2 (1996), 25–38 | MR | Zbl