On extensions and branching rules for modules close to completely splittable
Sbornik. Mathematics, Tome 196 (2005) no. 8, pp. 1209-1249 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The modules $D^\lambda{\downarrow}_{\Sigma_{n-1}}$ and $D^\lambda{\uparrow}^{\Sigma_{n+1}}$ are described for certain simple $K\Sigma_n$-modules $D^\lambda$ (the completely splittable ones or close to them), where $K$ is a field of characteristic $p>0$ and $\Sigma_n$ is the symmetric group of degree $n$. This result is based on an upper bound for the dimensions of the $\operatorname{Ext}^1$-spaces between certain simple modules.
@article{SM_2005_196_8_a4,
     author = {V. V. Shchigolev},
     title = {On extensions and branching rules for modules close to completely splittable},
     journal = {Sbornik. Mathematics},
     pages = {1209--1249},
     year = {2005},
     volume = {196},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_8_a4/}
}
TY  - JOUR
AU  - V. V. Shchigolev
TI  - On extensions and branching rules for modules close to completely splittable
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 1209
EP  - 1249
VL  - 196
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_8_a4/
LA  - en
ID  - SM_2005_196_8_a4
ER  - 
%0 Journal Article
%A V. V. Shchigolev
%T On extensions and branching rules for modules close to completely splittable
%J Sbornik. Mathematics
%D 2005
%P 1209-1249
%V 196
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2005_196_8_a4/
%G en
%F SM_2005_196_8_a4
V. V. Shchigolev. On extensions and branching rules for modules close to completely splittable. Sbornik. Mathematics, Tome 196 (2005) no. 8, pp. 1209-1249. http://geodesic.mathdoc.fr/item/SM_2005_196_8_a4/

[1] Kertis Ch., Rainer I., Teoriya predstavleniya konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969 | MR

[2] Kleshchev A. S., Sheth J., “On extensions of simple modules over symmetric and algebraic groups”, J. Algebra, 221:2 (1999), 705–722 | DOI | MR | Zbl

[3] Kleshchev A. S., “On decomposition numbers and branching coefficients for symmetric and special linear groups”, Proc. London Math. Soc. (3), 75:3 (1997), 497–558 | DOI | MR | Zbl

[4] Brundan J., Kleshchev A. S., “On translation functors for general linear and symmetric groups”, Proc. London Math. Soc. (3), 80:1 (2000), 75–106 | DOI | MR | Zbl

[5] Schigolev V. V., “O nekotorykh rasshireniyakh vpolne rasscheplyaemykh modulei”, Izv. RAN. Ser. matem., 68:4 (2004), 117–150 | MR

[6] Kleshchev A. S., “Completely splittable representations of symmetric groups”, J. Algebra, 181:2 (1996), 584–592 | DOI | MR | Zbl

[7] Mullineux G., “Bijections of $p$-regular partitions and $p$-modular irreducibles of the symmetric groups”, J. London Math. Soc. (2), 20:1 (1979), 60–66 | DOI | MR | Zbl

[8] Ford B., Kleshchev A. S., “A proof of the Mullineux conjecture”, Math. Z., 226:2 (1997), 267–308 | DOI | MR | Zbl

[9] James G. D., Kerber A., The representation theory of the symmetric group, Addison-Wesley, London, 1981 | MR | Zbl

[10] Dzheims G., Teoriya predstavlenii simmetricheskoi gruppy, Mir, M., 1980

[11] Brundan J., Kleshchev A., “Modular Littlewood–Richardson coefficients”, Math. Z., 232 (1999), 287–320 | DOI | MR | Zbl

[12] Green J. A., Polynomial representations of $GL_n(K)$, Lecture Notes in Math., 830, Springer-Verlag, Berlin, 1980 | MR | Zbl

[13] Kleshchev A. S., “Branching rules for modular representations of symmetric groups. I”, J. Algebra, 178:2 (1995), 493–511 | DOI | MR | Zbl

[14] James G. D., Murphy G. E., “The determinant of the Gram matrix for a Specht module”, J. Algebra, 59:1 (1979), 222–235 | DOI | MR | Zbl

[15] Hemmer D. J., “The $\operatorname{Ext}^1$-quiver for completely splittable representations of the symmetric group”, J. Group Theory, 2001, no. 4, 401–416 | DOI | MR | Zbl

[16] Bessenrodt C., Olsson J. B., “On Mullineux symbols”, J. Combin. Theory Ser. A, 68:2 (1994), 340–360 | DOI | MR | Zbl

[17] Kleshchev A. S., Sheth J., “Corrigendum: “On extensions of simple modules over symmetric and algebraic groups””, J. Algebra, 238:2 (2001), 843–844 | DOI | MR | Zbl

[18] Kleshchev A. S., Nakano D., “On comparing the cohomology of general linear and symmetric groups”, Pacific J. Math., 201 (2001), 339–355 | MR | Zbl

[19] Jantzen J. C., Representations of algebraic groups, Pure Appl. Math., 131, Academic Press, Inc., Boston, MA, 1987 | MR | Zbl

[20] Donkin S., “On Schur algebras and related algebras. I”, J. Algebra, 104:2 (1986), 310–328 | DOI | MR | Zbl

[21] Shchigolev V. V., “On the stabilization problem for submodules of Specht modules”, J. Algebra, 251:2 (2002), 790–812 | DOI | MR | Zbl

[22] Kleshchev A. S., “Branching rules for modular representations of symmetric groups. III: Some corollaries and a problem of Mullineux”, J. London Math. Soc. (2), 54:2 (1996), 25–38 | MR | Zbl