Cauchy operator of a~non-stationary linear differential equation with a~small parameter at the derivative
Sbornik. Mathematics, Tome 196 (2005) no. 8, pp. 1165-1208
Voir la notice de l'article provenant de la source Math-Net.Ru
A diagonalization algorithm for a matrix pencil depending on a variable and a parameter in the cases when the limiting matrix has a simple spectrum or a multiple eigenvalue for all values of the variable is put forward. The algorithm uses an exhaustive superposition of special similarity transformations. Formulae for the Cauchy operator of a linear non-stationary equation with a small parameter at the derivative and with a matrix pencil are obtained for various degeneracy orders of the structure matrix.
@article{SM_2005_196_8_a3,
author = {K. I. Chernyshov},
title = {Cauchy operator of a~non-stationary linear differential equation with a~small parameter at the derivative},
journal = {Sbornik. Mathematics},
pages = {1165--1208},
publisher = {mathdoc},
volume = {196},
number = {8},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2005_196_8_a3/}
}
TY - JOUR AU - K. I. Chernyshov TI - Cauchy operator of a~non-stationary linear differential equation with a~small parameter at the derivative JO - Sbornik. Mathematics PY - 2005 SP - 1165 EP - 1208 VL - 196 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2005_196_8_a3/ LA - en ID - SM_2005_196_8_a3 ER -
K. I. Chernyshov. Cauchy operator of a~non-stationary linear differential equation with a~small parameter at the derivative. Sbornik. Mathematics, Tome 196 (2005) no. 8, pp. 1165-1208. http://geodesic.mathdoc.fr/item/SM_2005_196_8_a3/