Cauchy operator of a~non-stationary linear differential equation with a~small parameter at the derivative
Sbornik. Mathematics, Tome 196 (2005) no. 8, pp. 1165-1208

Voir la notice de l'article provenant de la source Math-Net.Ru

A diagonalization algorithm for a matrix pencil depending on a variable and a parameter in the cases when the limiting matrix has a simple spectrum or a multiple eigenvalue for all values of the variable is put forward. The algorithm uses an exhaustive superposition of special similarity transformations. Formulae for the Cauchy operator of a linear non-stationary equation with a small parameter at the derivative and with a matrix pencil are obtained for various degeneracy orders of the structure matrix.
@article{SM_2005_196_8_a3,
     author = {K. I. Chernyshov},
     title = {Cauchy operator of a~non-stationary linear differential equation with a~small parameter at the derivative},
     journal = {Sbornik. Mathematics},
     pages = {1165--1208},
     publisher = {mathdoc},
     volume = {196},
     number = {8},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_8_a3/}
}
TY  - JOUR
AU  - K. I. Chernyshov
TI  - Cauchy operator of a~non-stationary linear differential equation with a~small parameter at the derivative
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 1165
EP  - 1208
VL  - 196
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_8_a3/
LA  - en
ID  - SM_2005_196_8_a3
ER  - 
%0 Journal Article
%A K. I. Chernyshov
%T Cauchy operator of a~non-stationary linear differential equation with a~small parameter at the derivative
%J Sbornik. Mathematics
%D 2005
%P 1165-1208
%V 196
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2005_196_8_a3/
%G en
%F SM_2005_196_8_a3
K. I. Chernyshov. Cauchy operator of a~non-stationary linear differential equation with a~small parameter at the derivative. Sbornik. Mathematics, Tome 196 (2005) no. 8, pp. 1165-1208. http://geodesic.mathdoc.fr/item/SM_2005_196_8_a3/