Variation formulae for the solutions of delay differential equations with discontinuous initial conditions
Sbornik. Mathematics, Tome 196 (2005) no. 8, pp. 1137-1163 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Variation formulae are proved for solutions of non-linear differential equations with variable delays and discontinuous initial conditions. The discontinuity of the initial condition means that at the initial moment of time the values of the initial function and the trajectory, generally speaking, do not coincide. The formulae obtained contain a new summand connected with the discontinuity of the initial condition and the variation of the initial moment.
@article{SM_2005_196_8_a2,
     author = {G. L. Kharatishvili and T. A. Tadumadze},
     title = {Variation formulae for the solutions of delay differential equations with discontinuous initial conditions},
     journal = {Sbornik. Mathematics},
     pages = {1137--1163},
     year = {2005},
     volume = {196},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_8_a2/}
}
TY  - JOUR
AU  - G. L. Kharatishvili
AU  - T. A. Tadumadze
TI  - Variation formulae for the solutions of delay differential equations with discontinuous initial conditions
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 1137
EP  - 1163
VL  - 196
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_8_a2/
LA  - en
ID  - SM_2005_196_8_a2
ER  - 
%0 Journal Article
%A G. L. Kharatishvili
%A T. A. Tadumadze
%T Variation formulae for the solutions of delay differential equations with discontinuous initial conditions
%J Sbornik. Mathematics
%D 2005
%P 1137-1163
%V 196
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2005_196_8_a2/
%G en
%F SM_2005_196_8_a2
G. L. Kharatishvili; T. A. Tadumadze. Variation formulae for the solutions of delay differential equations with discontinuous initial conditions. Sbornik. Mathematics, Tome 196 (2005) no. 8, pp. 1137-1163. http://geodesic.mathdoc.fr/item/SM_2005_196_8_a2/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1961 | Zbl

[2] Gamkrelidze R. V., “On some extremal problems in the theory of differential equation with application to the theory of optimal control”, SIAM J. Control Optim., 3 (1965), 505–527 | DOI | MR

[3] Kharatishvili G. L., Optimalnye protsessy s zapazdyvaniyami, Metsniereba, Tbilisi, 1966

[4] Ogustoreli N., Time-lag control systems, Academic Press, New York, 1966 | MR

[5] Banks H. T., “Necessary conditions for control problems with variable time lags”, SIAM J. Control Optim., 6:1 (1968), 9–47 | DOI | MR | Zbl

[6] Gamkrelidze R. V., Kharatishvili G. L., “Ekstremalnye zadachi v lineinykh topologicheskikh prostranstvakh”, Izv. AN SSSR. Ser. matem., 33:4 (1969), 781–839 | MR | Zbl

[7] Kharatishvili G. L., Machaidze Z. A., Markozashvili N. I., Tadumadze T. A., Abstraktnaya variatsionnaya teoriya i ee primeneniya k optimalnym zadacham s zapazdyvaniyami, Metsniereba, Tbilisi, 1973

[8] Gamkrelidze R. V., Osnovy optimalnogo upravleniya, Izd-vo Tbil. gos. un-ta, Tbilisi, 1975 | MR

[9] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1965 | MR | Zbl

[10] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR

[11] Kharatishvili G., Tadumadze T., Gorgodze N., “Continuous dependence and differentiability of solution with respect to initial data and right-hand side for differential equations with deviating argument”, Mem. Differential Equations Math. Phys., 19 (2000), 3–105 | MR | Zbl