Multipliers in weighted Sobolev spaces
Sbornik. Mathematics, Tome 196 (2005) no. 8, pp. 1109-1136 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $X_1$ and $X_2$ be a pair of Banach spaces of functions in $\Omega\subset\mathbb R^n$. A multiplier from $X_1$ into $X_2$ is a function $\gamma$ on $\Omega$ such that $\gamma X_1=\{\gamma f,\,f\in X_1\}\subset X_2$. By the norm $\|\gamma\|=\|\gamma\|_{M(X_1\to X_2)}$ one means the norm of the operator $T(u)=\gamma u$, $u\in X_1$. Conditions ensuring that a function $\gamma$ belongs to the multiplier classes $M(W_1\to W_2)$ and $M(W\to L)$ are found, where $W$ and $L$ are Sobolev and Lebesgue weighted spaces, respectively. Estimates of the norms of multipliers free from capacity characteristics are found. Special local maximal operators are introduced and significantly used.
@article{SM_2005_196_8_a1,
     author = {L. K. Kusainova},
     title = {Multipliers in weighted {Sobolev} spaces},
     journal = {Sbornik. Mathematics},
     pages = {1109--1136},
     year = {2005},
     volume = {196},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_8_a1/}
}
TY  - JOUR
AU  - L. K. Kusainova
TI  - Multipliers in weighted Sobolev spaces
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 1109
EP  - 1136
VL  - 196
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_8_a1/
LA  - en
ID  - SM_2005_196_8_a1
ER  - 
%0 Journal Article
%A L. K. Kusainova
%T Multipliers in weighted Sobolev spaces
%J Sbornik. Mathematics
%D 2005
%P 1109-1136
%V 196
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2005_196_8_a1/
%G en
%F SM_2005_196_8_a1
L. K. Kusainova. Multipliers in weighted Sobolev spaces. Sbornik. Mathematics, Tome 196 (2005) no. 8, pp. 1109-1136. http://geodesic.mathdoc.fr/item/SM_2005_196_8_a1/

[1] Mazya V. G., Shaposhnikova T. O., Multiplikatory v prostranstvakh differentsiruemykh funktsii, Izd-vo LGU, L., 1986 | MR | Zbl

[2] Dynkin E. M., Osilenker B. P., “Vesovye otsenki singulyarnykh integralov i ikh primeneniya”, Matem. analiz. Itogi nauki i tekhniki, 21, VINITI, M., 1983, 42–129 | MR

[3] Sawyer E. T., “Two weight norm inequalities for certain maximal and integral operators”, Lecture Notes in Math., 108, 1982, 102–127 | MR

[4] Stein I., Singulyarnye integralnye i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[5] Kusainova L. K., Teoremy vlozheniya i interpolyatsii vesovykh prostranstv Soboleva, Dis. ... dokt. fiz.-matem. nauk, In-t matem. MON RK, Almaty, 1999

[6] Gusman M., Differentsirovanie integralov v $\mathbb R^n$, Mir, M., 1978 | MR

[7] Berg I., Lefstrem I., Interpolyatsionnye prostranstva, Mir, M., 1980 | MR

[8] Muckenhoupt B., Wheeden R. L., “Weichted vorm inequalities for fractional integrales”, Trans. Amer. Math. Soc., 192 (1974), 261–174 | DOI | MR

[9] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR | Zbl