Ratio asymptotics of Hermite--Pad\'e polynomials for Nikishin systems
Sbornik. Mathematics, Tome 196 (2005) no. 8, pp. 1089-1107
Voir la notice de l'article provenant de la source Math-Net.Ru
The existence of ratio asymptotics is proved for a sequence of multiple orthogonal polynomials with orthogonality relations distributed among a system of $m$ finite Borel measures with support on a bounded interval of the real line which form a so-called Nikishin system.
For $m=1$ this result reduces to Rakhmanov's celebrated theorem on the ratio asymptotics for orthogonal polynomials on the real line.
@article{SM_2005_196_8_a0,
author = {A. I. Aptekarev and G. L\'opez Lagomasino and I. Alvarez Rocha},
title = {Ratio asymptotics of {Hermite--Pad\'e} polynomials for {Nikishin} systems},
journal = {Sbornik. Mathematics},
pages = {1089--1107},
publisher = {mathdoc},
volume = {196},
number = {8},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2005_196_8_a0/}
}
TY - JOUR AU - A. I. Aptekarev AU - G. López Lagomasino AU - I. Alvarez Rocha TI - Ratio asymptotics of Hermite--Pad\'e polynomials for Nikishin systems JO - Sbornik. Mathematics PY - 2005 SP - 1089 EP - 1107 VL - 196 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2005_196_8_a0/ LA - en ID - SM_2005_196_8_a0 ER -
%0 Journal Article %A A. I. Aptekarev %A G. López Lagomasino %A I. Alvarez Rocha %T Ratio asymptotics of Hermite--Pad\'e polynomials for Nikishin systems %J Sbornik. Mathematics %D 2005 %P 1089-1107 %V 196 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2005_196_8_a0/ %G en %F SM_2005_196_8_a0
A. I. Aptekarev; G. López Lagomasino; I. Alvarez Rocha. Ratio asymptotics of Hermite--Pad\'e polynomials for Nikishin systems. Sbornik. Mathematics, Tome 196 (2005) no. 8, pp. 1089-1107. http://geodesic.mathdoc.fr/item/SM_2005_196_8_a0/