Ratio asymptotics of Hermite–Padé polynomials for Nikishin systems
Sbornik. Mathematics, Tome 196 (2005) no. 8, pp. 1089-1107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The existence of ratio asymptotics is proved for a sequence of multiple orthogonal polynomials with orthogonality relations distributed among a system of $m$ finite Borel measures with support on a bounded interval of the real line which form a so-called Nikishin system. For $m=1$ this result reduces to Rakhmanov's celebrated theorem on the ratio asymptotics for orthogonal polynomials on the real line.
@article{SM_2005_196_8_a0,
     author = {A. I. Aptekarev and G. L\'opez Lagomasino and I. Alvarez Rocha},
     title = {Ratio asymptotics of {Hermite{\textendash}Pad\'e} polynomials for {Nikishin} systems},
     journal = {Sbornik. Mathematics},
     pages = {1089--1107},
     year = {2005},
     volume = {196},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_8_a0/}
}
TY  - JOUR
AU  - A. I. Aptekarev
AU  - G. López Lagomasino
AU  - I. Alvarez Rocha
TI  - Ratio asymptotics of Hermite–Padé polynomials for Nikishin systems
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 1089
EP  - 1107
VL  - 196
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_8_a0/
LA  - en
ID  - SM_2005_196_8_a0
ER  - 
%0 Journal Article
%A A. I. Aptekarev
%A G. López Lagomasino
%A I. Alvarez Rocha
%T Ratio asymptotics of Hermite–Padé polynomials for Nikishin systems
%J Sbornik. Mathematics
%D 2005
%P 1089-1107
%V 196
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2005_196_8_a0/
%G en
%F SM_2005_196_8_a0
A. I. Aptekarev; G. López Lagomasino; I. Alvarez Rocha. Ratio asymptotics of Hermite–Padé polynomials for Nikishin systems. Sbornik. Mathematics, Tome 196 (2005) no. 8, pp. 1089-1107. http://geodesic.mathdoc.fr/item/SM_2005_196_8_a0/

[1] Rakhmanov E. A., “Ob asimptotike otnosheniya ortogonalnykh mnogochlenov”, Matem. sb., 103 (145):2 (1977), 237–252 | MR | Zbl

[2] Rakhmanov E. A., “Ob asimptotike otnosheniya ortogonalnykh mnogochlenov. II”, Matem. sb., 118 (160):1 (1982), 104–117 | MR | Zbl

[3] Rakhmanov E. A., “Ob asimptoticheskikh svoistvakh ortogonalnykh mnogochlenov na edinichnoi okruzhnosti s vesami, ne udovletvoryayuschimi usloviyu Segë”, Matem. sb., 130 (172):2 (1986), 151–169 | MR

[4] Nevai P., “Weakly convergent sequences of functions and orthogonal polynomials”, J. Approx. Theory, 65 (1991), 322–340 | DOI | MR | Zbl

[5] Lopes G., “Ob asimptotike otnosheniya ortogonalnykh mnogochlenov i skhodimost mnogotochechnykh approksimatsii Pade”, Matem. sb., 128 (170):2 (1985), 216–229 | MR

[6] Lopes G., “Skhodimost approksimatsii Pade dlya meromorfnykh funktsii stiltesovskogo tipa i sravnitelnaya asimptotika ortogonalnykh mnogochlenov”, Matem. sb., 136 (178):2 (1988), 206–226 | MR | Zbl

[7] Gonchar A. A., Rakhmanov E. A., “O skhodimosti sovmestnykh approl ksimatsii Pade dlya sistem funktsii markovskogo tipa”, Trudy MIAN, 157, 1981, 31–48 | MR | Zbl

[8] Nikishin E. M., Sorokin V. N., Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR | Zbl

[9] Nikishin E. M., “O sovmestnykh approksimatsiyakh Pade”, Matem. sb., 113 (145):4 (1980), 499–519 | MR | Zbl

[10] Gonchar A. A., Rakhmanov E. A., Sorokin V. N., “Approksimatsii Ermita–Pade dlya sistem funktsii markovskogo tipa”, Matem. sb., 188:5 (1997), 33–58 | MR | Zbl

[11] Driver K., Stahl H., “Normality in Nikishin systems”, Indag. Math. (N.S.), 5 (1994), 161–187 | DOI | MR | Zbl

[12] Fidalgo Prieto U., Illán J., López Lagomasino G., “Hermite–Padé approximation and simultaneous quadrature formulas”, J. Approx. Theory, 126 (2004), 171–197 | DOI | MR | Zbl

[13] Fidalgo Prieto U., López Lagomasino G., “On perfect Nikishin systems”, Comput. Methods Funct. Theory, 2 (2002), 415–426 | MR | Zbl

[14] Stahl H., Totik V., General orthogonal polynomials, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl

[15] Fidalgo Prieto U., López Lagomasino G., “Rate of convergence of generalized Hermite–Padé approximants of Nikishin systems”, Constr. Approx., 23:2 (2006), 165–196 (to appear) | DOI | MR | Zbl

[16] Aptekarev A. I., “Silnaya asimptotika sovmestno ortogonalnykh mnogochlenov dlya sistem Nikishina”, Matem. sb., 190:5 (1999), 3–44 | MR | Zbl

[17] de la Calle Ysern B., López Lagomasino G., “Strong asymptotic of orthogonal polynomials with varying measures and Hermite–Padé approximants”, J. Comput. Appl. Math., 99 (1998), 91–103 | DOI | MR | Zbl

[18] Kershaw D., “A note on orthogonal polynomials”, Proc. Edinburgh Math. Soc. (2), 17 (1970), 83–93 | DOI | MR | Zbl

[19] Borwein P., Erdélyi T., Polynomials and polynomial inequalities, Grad. Texts in Math., 161, Springer-Verlag, New York, 1991

[20] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973 | MR

[21] de la Calle Ysern B., López Lagomasino G., “Weak convergence of varying measures and Hermite–Padé orthogonal polynomials”, Constr. Approx., 15 (1999), 553–575 | DOI | MR | Zbl

[22] de la Calle Ysern B., López Lagomasino G., “Convergencia relativa de polinomios ortogonales variantes”, Margaritha mathematica en memoria de José Javier Guadalupe Hernández (Chicho), eds. L. Español, J. L. Varona, Univ. de La Rioja, Logroño, 2001