Ratio asymptotics of Hermite--Pad\'e polynomials for Nikishin systems
Sbornik. Mathematics, Tome 196 (2005) no. 8, pp. 1089-1107

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of ratio asymptotics is proved for a sequence of multiple orthogonal polynomials with orthogonality relations distributed among a system of $m$ finite Borel measures with support on a bounded interval of the real line which form a so-called Nikishin system. For $m=1$ this result reduces to Rakhmanov's celebrated theorem on the ratio asymptotics for orthogonal polynomials on the real line.
@article{SM_2005_196_8_a0,
     author = {A. I. Aptekarev and G. L\'opez Lagomasino and I. Alvarez Rocha},
     title = {Ratio asymptotics of {Hermite--Pad\'e} polynomials for {Nikishin} systems},
     journal = {Sbornik. Mathematics},
     pages = {1089--1107},
     publisher = {mathdoc},
     volume = {196},
     number = {8},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_8_a0/}
}
TY  - JOUR
AU  - A. I. Aptekarev
AU  - G. López Lagomasino
AU  - I. Alvarez Rocha
TI  - Ratio asymptotics of Hermite--Pad\'e polynomials for Nikishin systems
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 1089
EP  - 1107
VL  - 196
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_8_a0/
LA  - en
ID  - SM_2005_196_8_a0
ER  - 
%0 Journal Article
%A A. I. Aptekarev
%A G. López Lagomasino
%A I. Alvarez Rocha
%T Ratio asymptotics of Hermite--Pad\'e polynomials for Nikishin systems
%J Sbornik. Mathematics
%D 2005
%P 1089-1107
%V 196
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2005_196_8_a0/
%G en
%F SM_2005_196_8_a0
A. I. Aptekarev; G. López Lagomasino; I. Alvarez Rocha. Ratio asymptotics of Hermite--Pad\'e polynomials for Nikishin systems. Sbornik. Mathematics, Tome 196 (2005) no. 8, pp. 1089-1107. http://geodesic.mathdoc.fr/item/SM_2005_196_8_a0/