Non-rational divisors over non-degenerate $cDV$-points
Sbornik. Mathematics, Tome 196 (2005) no. 7, pp. 1075-1088
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose that $(X,o)$ is a 3-dimensional terminal singularity of type $cD$ or $cE$ defined in ${\mathbb C}^4$ by an equation that is non-degenerate with respect to its Newton diagram. We show that there exists at most one non-rational divisor $E$ over $(X,o)$ with discrepancy
$a(E,X)=1$. We also describe all the blow-ups of the singularity $(X,o)$ with non-rational exceptional divisors of discrepancy 1.
@article{SM_2005_196_7_a5,
author = {D. A. Stepanov},
title = {Non-rational divisors over non-degenerate $cDV$-points},
journal = {Sbornik. Mathematics},
pages = {1075--1088},
publisher = {mathdoc},
volume = {196},
number = {7},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2005_196_7_a5/}
}
D. A. Stepanov. Non-rational divisors over non-degenerate $cDV$-points. Sbornik. Mathematics, Tome 196 (2005) no. 7, pp. 1075-1088. http://geodesic.mathdoc.fr/item/SM_2005_196_7_a5/