Non-rational divisors over non-degenerate $cDV$-points
Sbornik. Mathematics, Tome 196 (2005) no. 7, pp. 1075-1088 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Suppose that $(X,o)$ is a 3-dimensional terminal singularity of type $cD$ or $cE$ defined in ${\mathbb C}^4$ by an equation that is non-degenerate with respect to its Newton diagram. We show that there exists at most one non-rational divisor $E$ over $(X,o)$ with discrepancy $a(E,X)=1$. We also describe all the blow-ups of the singularity $(X,o)$ with non-rational exceptional divisors of discrepancy 1.
@article{SM_2005_196_7_a5,
     author = {D. A. Stepanov},
     title = {Non-rational divisors over non-degenerate $cDV$-points},
     journal = {Sbornik. Mathematics},
     pages = {1075--1088},
     year = {2005},
     volume = {196},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_7_a5/}
}
TY  - JOUR
AU  - D. A. Stepanov
TI  - Non-rational divisors over non-degenerate $cDV$-points
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 1075
EP  - 1088
VL  - 196
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_7_a5/
LA  - en
ID  - SM_2005_196_7_a5
ER  - 
%0 Journal Article
%A D. A. Stepanov
%T Non-rational divisors over non-degenerate $cDV$-points
%J Sbornik. Mathematics
%D 2005
%P 1075-1088
%V 196
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2005_196_7_a5/
%G en
%F SM_2005_196_7_a5
D. A. Stepanov. Non-rational divisors over non-degenerate $cDV$-points. Sbornik. Mathematics, Tome 196 (2005) no. 7, pp. 1075-1088. http://geodesic.mathdoc.fr/item/SM_2005_196_7_a5/

[1] Reid M., “Young person's guide to canonical singularities”, Proc. Sympos. Pure Math., 46:1 (1987), 345–414 | MR | Zbl

[2] Danilov V. I., “Geometriya toricheskikh mnogoobrazii”, UMN, 33:2 (1978), 85–134 | MR | Zbl

[3] Varchenko A. N., “Zeta-function of monodromy and Newton's diagram”, Invent. Math., 37 (1976), 253–262 | DOI | MR | Zbl

[4] Reid M., “Canonical 3-folds”, Journées de Géométrie Algébrique d'Angers (Juillet 1979/Algebraic Geometry, Angers, 1979), Sijthoff Noordhoff, Alphen aan den Rijn–Germantown, Md., 1980, 273–310 | MR

[5] Prokhorov Yu. G., “$\mathbb E1$-blowing ups of terminal singularities”, J. Math. Sci. (New York), 115:3 (2003), 2395–2427 | DOI | MR | Zbl

[6] Stepanov D. A., “O razresheniyakh terminalnykh osobennostei”, Matem. zametki, 77:1 (2005), 127–140 | MR | Zbl

[7] Reid M., “Minimal models of canonical 3-folds”, Algebraic varieties and analytic varieties (Tokyo, 1981), Adv. Stud. Pure Math., 1, North-Holland, Amsterdam, 1983, 131–180 | MR

[8] Koks D., Littl Dzh., O'Shi D., Idealy, mnogoobraziya i algoritmy, Mir, M., 2000

[9] Hironaka H., “Formal line bundles along exceptional loci”, Algebraic Geometry, Internat. Colloq., Tata Inst. Fund. Res. (Bombay, 1968), Oxford Univ. Press., London, 1969, 201–218 | MR

[10] Prokhorov Yu. G., “Blow-ups of canonical singularities”, Algebra (Moscow, 1998), de Gruyter, Berlin, 2000, 301–317 | MR | Zbl

[11] Ishii S., Prokhorov Yu. G., “Hypersurface exceptional singularities”, Internat. J. Math., 12:6 (2001), 661–687 | DOI | MR | Zbl

[12] Hayakawa T., “Blowing ups of 3-dimensional terminal singularities”, Publ. Res. Inst. Math. Sci., 35 (1999), 515–570 | DOI | MR | Zbl