Effective solution of the problem of the optimal stability polynomial
Sbornik. Mathematics, Tome 196 (2005) no. 7, pp. 959-981

Voir la notice de l'article provenant de la source Math-Net.Ru

An effective method for finding the polynomial approximating the exponential function with order 3 at the origin and deviating from 0 by at most 1 on the longest interval of the real axis is put forward. This problem is reduced to the solution of four equations on a 4-dimensional moduli space of algebraic curves. A numerical realization of this method using summation of linear Poincaré series is described.
@article{SM_2005_196_7_a1,
     author = {A. B. Bogatyrev},
     title = {Effective solution of the problem of the optimal stability polynomial},
     journal = {Sbornik. Mathematics},
     pages = {959--981},
     publisher = {mathdoc},
     volume = {196},
     number = {7},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_7_a1/}
}
TY  - JOUR
AU  - A. B. Bogatyrev
TI  - Effective solution of the problem of the optimal stability polynomial
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 959
EP  - 981
VL  - 196
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_7_a1/
LA  - en
ID  - SM_2005_196_7_a1
ER  - 
%0 Journal Article
%A A. B. Bogatyrev
%T Effective solution of the problem of the optimal stability polynomial
%J Sbornik. Mathematics
%D 2005
%P 959-981
%V 196
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2005_196_7_a1/
%G en
%F SM_2005_196_7_a1
A. B. Bogatyrev. Effective solution of the problem of the optimal stability polynomial. Sbornik. Mathematics, Tome 196 (2005) no. 7, pp. 959-981. http://geodesic.mathdoc.fr/item/SM_2005_196_7_a1/