Newton's aerodynamic problem in media of chaotically moving particles
Sbornik. Mathematics, Tome 196 (2005) no. 6, pp. 885-933 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of minimum resistance is studied for a body moving with constant velocity in a rarefied medium of chaotically moving point particles in the Euclidean space $\mathbb R^d$. The distribution of the velocities of the particles is assumed to be radially symmetric. Under additional assumptions on the distribution function a complete classification of the bodies of least resistance is carried out. In the case of dimension three or more there exist two kinds of solution: a body similar to the solution of the classical Newton problem and a union of two such bodies ‘glued together’ along the rear parts of their surfaces. In the two-dimensional case there exist solutions of five distinct types: (a) a trapezium; (b) an isosceles triangle; (c) the union of an isosceles triangle and a trapezium with a common base; (d) the union of two isosceles triangles with a common base; (e) the union of two triangles and a trapezium. Cases (a)–(d) are realized for an arbitrary velocity distribution of the particles, while case (e) is realized only for some distributions. Two limit cases are considered: when the average velocity of the particles is large and when it is small in comparison with the velocity of the body. Finally, the analytic results so obtained are used for the numerical study of a particular case: the problem of the motion of a body in a rarefied homogeneous monatomic ideal gas of positive temperature in $\mathbb R^2$ and in $\mathbb R^3$.
@article{SM_2005_196_6_a4,
     author = {A. Yu. Plakhov and D. Torres},
     title = {Newton's aerodynamic problem in media of chaotically moving particles},
     journal = {Sbornik. Mathematics},
     pages = {885--933},
     year = {2005},
     volume = {196},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_6_a4/}
}
TY  - JOUR
AU  - A. Yu. Plakhov
AU  - D. Torres
TI  - Newton's aerodynamic problem in media of chaotically moving particles
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 885
EP  - 933
VL  - 196
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_6_a4/
LA  - en
ID  - SM_2005_196_6_a4
ER  - 
%0 Journal Article
%A A. Yu. Plakhov
%A D. Torres
%T Newton's aerodynamic problem in media of chaotically moving particles
%J Sbornik. Mathematics
%D 2005
%P 885-933
%V 196
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2005_196_6_a4/
%G en
%F SM_2005_196_6_a4
A. Yu. Plakhov; D. Torres. Newton's aerodynamic problem in media of chaotically moving particles. Sbornik. Mathematics, Tome 196 (2005) no. 6, pp. 885-933. http://geodesic.mathdoc.fr/item/SM_2005_196_6_a4/

[1] Newton I., Philosophiae naturalis principia mathematica, 1686

[2] Buttazzo G., Kawohl B., “On Newton's problem of minimal resistance”, Math. Intelligencer., 15 (1993), 7–12 | DOI | MR | Zbl

[3] Brock F., Ferone V., Kawohl B., “A symmetry problem in the calculus of variations”, Calc. Var. Partial Differential Equations, 4 (1996), 593–599 | MR | Zbl

[4] Lachand-Robert T., Peletier M. A., “Newton's problem of the body of minimal resistance in the class of convex developable functions”, Math. Nachr., 226 (2001), 153–176 | 3.0.CO;2-2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[5] Lachand-Robert T., Peletier M. A., “An example of non-convex minimization and an application to Newton's problem of the body of least resistance”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 179–198 | DOI | MR | Zbl

[6] Buttazzo G., Ferone V., Kawohl B., “Minimum problems over sets of concave functions and related questions”, Math. Nachr., 173 (1995), 71–89 | DOI | MR | Zbl

[7] Comte M., Lachand-Robert T., “Newton's problem of the body of minimal resistance under a single-impact assumption”, Calc. Var. Partial Differinteal Equations, 12 (2001), 173–211 | DOI | MR | Zbl

[8] Comte M., Lachand-Robert T., “Existence of minimizers for Newton's problem of the body of minimal resistance under a single-impact assumption”, J. Anal. Math., 83 (2001), 313–335 | DOI | MR | Zbl

[9] Plakhov A. Yu., “K zadache Nyutona o tele naimenshego aerodinamicheskogo soprotivleniya”, Dokl. RAN, 390:3 (2003), 314–317 | MR

[10] Plakhov A. Yu., “Zadacha Nyutona o tele naimenshego soprotivleniya s ogranichennym chislom soudarenii”, UMN, 58:1 (2003), 195–196 | MR | Zbl

[11] Horstmann D., Kawohl B., Villaggio P., “Newton's aerodynamic problem in the presence of friction”, NoDEA Nonlinear Differential Equations Appl., 9:3 (2002), 295–307 | DOI | MR | Zbl

[12] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, Fizmatlit, M., 1976 | Zbl

[13] Torres D. F. M., Plakhov A. Yu., “Optimal control of Newton-type problems of minimal resistance”, Rend. Semin. Mat. Univ. Politec. Torino, 64:1 (2006), 79–95 ; arXiv:math.OC/0404237 | MR

[14] Tikhomirov V. M., “Aerodinamicheskaya zadacha Nyutona”, Kvant, 1982, no. 5, 11–18 | MR