@article{SM_2005_196_6_a2,
author = {L. B. Golinskii and I. E. Egorova},
title = {Limit sets for the discrete spectrum of complex {Jacobi} matrices},
journal = {Sbornik. Mathematics},
pages = {817--844},
year = {2005},
volume = {196},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2005_196_6_a2/}
}
L. B. Golinskii; I. E. Egorova. Limit sets for the discrete spectrum of complex Jacobi matrices. Sbornik. Mathematics, Tome 196 (2005) no. 6, pp. 817-844. http://geodesic.mathdoc.fr/item/SM_2005_196_6_a2/
[1] Pavlov B. S., “O nesamosopryazhennom operatore Shrëdingera. I”, Problemy matematicheskoi fiziki, no. 1, Izd-vo LGU, L., 1966, 102–132 | MR
[2] Pavlov B. S., “O nesamosopryazhennom operatore Shrëdingera. II”, Problemy matematicheskoi fiziki, no. 2, Izd-vo LGU, L., 1967, 133–157 | MR
[3] Bairamov E., Cakar O., Krall A. M., “Non-selfadjoint difference operators and Jacobi matrices with spectral singularities”, Math. Nachr., 229 (2001), 5–14 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[4] Geronimo J. S., Case K. M., “Scattering theory and polynomials on the real line”, Trans. Amer. Math. Soc., 258 (1980), 467–494 | DOI | MR | Zbl
[5] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR
[6] Killip R., Simon B., “Sum rules for Jacobi matrices and their applications to spectral theory”, Ann. Math., 158 (2003), 253–321 | DOI | MR | Zbl
[7] Carleson L., “Sets of uniqueness for functions analytic in the unit disc”, Acta Math., 87 (1952), 325–345 | DOI | MR | Zbl
[8] Aptekarev A. I., Kalyaguine V., Van Assche W., “Criterion for the resolvent set of nonsymmetric tridiagonal operators”, Proc. Amer. Math. Soc., 123 (1995), 2423–2430 | DOI | MR | Zbl
[9] Beckermann B., “On the convergence of bounded J-fractions on the resolvent set of the corresponding second order difference operator”, J. Approx. Theory, 99 (1999), 369–408 | DOI | MR | Zbl
[10] Beckermann B., Kaliaguine V., “The diagonal of the Padé table and the approximation of the Weyl function of the second order difference operators”, Constr. Approx., 13 (1997), 481–510 | DOI | MR | Zbl
[11] Beckermann B., “Complex Jacobi matrices”, J. Comput. Appl. Math., 127 (2001), 17–65 | DOI | MR | Zbl
[12] Barrios D., Lopes G., Martines-Finkelshtein A., Torrano E., “Konechnomernye approksimatsii rezolventy beskonechnoi lentochnoi matritsy i nepreryvnye drobi”, Matem. sb., 190:4 (1999), 23–42 | MR | Zbl
[13] Guseinov G. Sh., “Opredelenie beskonechnoi matritsy Yakobi po dannym rasseyaniya”, Dokl. AN SSSR, 227:6 (1976), 1289–1292 | MR | Zbl
[14] Teschl G., Jacobi operators and completely integrable nonlinear lattices, Math. Surveys Monogr., 72, Amer. Math. Soc., Providence, RI, 1999. | MR
[15] Fatou P., “Séries trigonométriques et séries de Taylor”, Acta Math., 30 (1906), 335–400 | DOI | MR | Zbl
[16] Beurling A., “Ensembles exceptionneles”, Acta Math., 72 (1939), 1–13 | DOI | MR
[17] Khruschev S. V., “Problema odnovremennoi approksimatsii i stiranie osobennostei integralov tipa Koshi”, Trudy MIAN, 130, 1978, 124–195
[18] Besicovitch A. S., Taylor S. J., “On the complementary intervals of a linear closed sets of zero Lebesque measure”, J. London Math. Soc., 29 (1954), 449–459 | DOI | MR | Zbl
[19] Taylor B. A., Williams D. L., “Boundary zero sets of $A^\infty$ functions satisfying growth conditions”, Proc. Amer. Math. Soc., 35 (1972), 155–160 | DOI | MR | Zbl
[20] Korenblyum B. I., “Kvazianaliticheskie klassy funktsii v kruge”, Dokl. AN SSSR, 164 (1965), 36–39 | Zbl
[21] Nikishin E. M., “Diskretnyi operator Shturma–Liuvillya i nekotorye zadachi teorii funktsii”, Trudy sem. im. I. G. Petrovskogo, no. 10, Izd-vo MGU, M., 1984, 3–77 | MR
[22] Toda M., Teoriya nelineinykh reshetok, Mir, M., 1984 | MR
[23] Kalyagin V. A., “O ratsionalnykh approksimatsiyakh rezolventnoi funktsii raznostnogo operatora vtorogo poryadka”, UMN, 49:3 (1994), 181–182 | MR | Zbl
[24] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR
[25] Geronimo J. S., “A relation between the coefficients in the recurrence formula and the spectral function for orthogonal polynomials”, Trans. Amer. Math. Soc., 260:1 (1980), 65–82 | DOI | MR | Zbl
[26] Kuijlaars A., McLaughlin K.T.-R., Van Assche W., Vanlessen M., “The Riemann–Hilbert approach to strong asymptotics for orthogonal polynomials on $[-1,1]$”, Adv. Math., 188 (2004), 337–398 | DOI | MR | Zbl