Limit sets for the discrete spectrum of complex Jacobi matrices
Sbornik. Mathematics, Tome 196 (2005) no. 6, pp. 817-844

Voir la notice de l'article provenant de la source Math-Net.Ru

The discrete spectrum of complex Jacobi matrices that are compact perturbations of the discrete Laplacian is studied. The precise stabilization rate (in the sense of order) of the matrix elements ensuring the finiteness of the discrete spectrum is found. An example of a Jacobi matrix with discrete spectrum having a unique limit point is constructed. These results are discrete analogues of Pavlov's well-known results on Schrödinger operators with complex potential on a half-axis.
@article{SM_2005_196_6_a2,
     author = {L. B. Golinskii and I. E. Egorova},
     title = {Limit sets for the discrete spectrum of complex {Jacobi} matrices},
     journal = {Sbornik. Mathematics},
     pages = {817--844},
     publisher = {mathdoc},
     volume = {196},
     number = {6},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_6_a2/}
}
TY  - JOUR
AU  - L. B. Golinskii
AU  - I. E. Egorova
TI  - Limit sets for the discrete spectrum of complex Jacobi matrices
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 817
EP  - 844
VL  - 196
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_6_a2/
LA  - en
ID  - SM_2005_196_6_a2
ER  - 
%0 Journal Article
%A L. B. Golinskii
%A I. E. Egorova
%T Limit sets for the discrete spectrum of complex Jacobi matrices
%J Sbornik. Mathematics
%D 2005
%P 817-844
%V 196
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2005_196_6_a2/
%G en
%F SM_2005_196_6_a2
L. B. Golinskii; I. E. Egorova. Limit sets for the discrete spectrum of complex Jacobi matrices. Sbornik. Mathematics, Tome 196 (2005) no. 6, pp. 817-844. http://geodesic.mathdoc.fr/item/SM_2005_196_6_a2/