Limit sets for the discrete spectrum of complex Jacobi matrices
Sbornik. Mathematics, Tome 196 (2005) no. 6, pp. 817-844 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The discrete spectrum of complex Jacobi matrices that are compact perturbations of the discrete Laplacian is studied. The precise stabilization rate (in the sense of order) of the matrix elements ensuring the finiteness of the discrete spectrum is found. An example of a Jacobi matrix with discrete spectrum having a unique limit point is constructed. These results are discrete analogues of Pavlov's well-known results on Schrödinger operators with complex potential on a half-axis.
@article{SM_2005_196_6_a2,
     author = {L. B. Golinskii and I. E. Egorova},
     title = {Limit sets for the discrete spectrum of complex {Jacobi} matrices},
     journal = {Sbornik. Mathematics},
     pages = {817--844},
     year = {2005},
     volume = {196},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_6_a2/}
}
TY  - JOUR
AU  - L. B. Golinskii
AU  - I. E. Egorova
TI  - Limit sets for the discrete spectrum of complex Jacobi matrices
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 817
EP  - 844
VL  - 196
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_6_a2/
LA  - en
ID  - SM_2005_196_6_a2
ER  - 
%0 Journal Article
%A L. B. Golinskii
%A I. E. Egorova
%T Limit sets for the discrete spectrum of complex Jacobi matrices
%J Sbornik. Mathematics
%D 2005
%P 817-844
%V 196
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2005_196_6_a2/
%G en
%F SM_2005_196_6_a2
L. B. Golinskii; I. E. Egorova. Limit sets for the discrete spectrum of complex Jacobi matrices. Sbornik. Mathematics, Tome 196 (2005) no. 6, pp. 817-844. http://geodesic.mathdoc.fr/item/SM_2005_196_6_a2/

[1] Pavlov B. S., “O nesamosopryazhennom operatore Shrëdingera. I”, Problemy matematicheskoi fiziki, no. 1, Izd-vo LGU, L., 1966, 102–132 | MR

[2] Pavlov B. S., “O nesamosopryazhennom operatore Shrëdingera. II”, Problemy matematicheskoi fiziki, no. 2, Izd-vo LGU, L., 1967, 133–157 | MR

[3] Bairamov E., Cakar O., Krall A. M., “Non-selfadjoint difference operators and Jacobi matrices with spectral singularities”, Math. Nachr., 229 (2001), 5–14 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[4] Geronimo J. S., Case K. M., “Scattering theory and polynomials on the real line”, Trans. Amer. Math. Soc., 258 (1980), 467–494 | DOI | MR | Zbl

[5] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[6] Killip R., Simon B., “Sum rules for Jacobi matrices and their applications to spectral theory”, Ann. Math., 158 (2003), 253–321 | DOI | MR | Zbl

[7] Carleson L., “Sets of uniqueness for functions analytic in the unit disc”, Acta Math., 87 (1952), 325–345 | DOI | MR | Zbl

[8] Aptekarev A. I., Kalyaguine V., Van Assche W., “Criterion for the resolvent set of nonsymmetric tridiagonal operators”, Proc. Amer. Math. Soc., 123 (1995), 2423–2430 | DOI | MR | Zbl

[9] Beckermann B., “On the convergence of bounded J-fractions on the resolvent set of the corresponding second order difference operator”, J. Approx. Theory, 99 (1999), 369–408 | DOI | MR | Zbl

[10] Beckermann B., Kaliaguine V., “The diagonal of the Padé table and the approximation of the Weyl function of the second order difference operators”, Constr. Approx., 13 (1997), 481–510 | DOI | MR | Zbl

[11] Beckermann B., “Complex Jacobi matrices”, J. Comput. Appl. Math., 127 (2001), 17–65 | DOI | MR | Zbl

[12] Barrios D., Lopes G., Martines-Finkelshtein A., Torrano E., “Konechnomernye approksimatsii rezolventy beskonechnoi lentochnoi matritsy i nepreryvnye drobi”, Matem. sb., 190:4 (1999), 23–42 | MR | Zbl

[13] Guseinov G. Sh., “Opredelenie beskonechnoi matritsy Yakobi po dannym rasseyaniya”, Dokl. AN SSSR, 227:6 (1976), 1289–1292 | MR | Zbl

[14] Teschl G., Jacobi operators and completely integrable nonlinear lattices, Math. Surveys Monogr., 72, Amer. Math. Soc., Providence, RI, 1999. | MR

[15] Fatou P., “Séries trigonométriques et séries de Taylor”, Acta Math., 30 (1906), 335–400 | DOI | MR | Zbl

[16] Beurling A., “Ensembles exceptionneles”, Acta Math., 72 (1939), 1–13 | DOI | MR

[17] Khruschev S. V., “Problema odnovremennoi approksimatsii i stiranie osobennostei integralov tipa Koshi”, Trudy MIAN, 130, 1978, 124–195

[18] Besicovitch A. S., Taylor S. J., “On the complementary intervals of a linear closed sets of zero Lebesque measure”, J. London Math. Soc., 29 (1954), 449–459 | DOI | MR | Zbl

[19] Taylor B. A., Williams D. L., “Boundary zero sets of $A^\infty$ functions satisfying growth conditions”, Proc. Amer. Math. Soc., 35 (1972), 155–160 | DOI | MR | Zbl

[20] Korenblyum B. I., “Kvazianaliticheskie klassy funktsii v kruge”, Dokl. AN SSSR, 164 (1965), 36–39 | Zbl

[21] Nikishin E. M., “Diskretnyi operator Shturma–Liuvillya i nekotorye zadachi teorii funktsii”, Trudy sem. im. I. G. Petrovskogo, no. 10, Izd-vo MGU, M., 1984, 3–77 | MR

[22] Toda M., Teoriya nelineinykh reshetok, Mir, M., 1984 | MR

[23] Kalyagin V. A., “O ratsionalnykh approksimatsiyakh rezolventnoi funktsii raznostnogo operatora vtorogo poryadka”, UMN, 49:3 (1994), 181–182 | MR | Zbl

[24] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR

[25] Geronimo J. S., “A relation between the coefficients in the recurrence formula and the spectral function for orthogonal polynomials”, Trans. Amer. Math. Soc., 260:1 (1980), 65–82 | DOI | MR | Zbl

[26] Kuijlaars A., McLaughlin K.T.-R., Van Assche W., Vanlessen M., “The Riemann–Hilbert approach to strong asymptotics for orthogonal polynomials on $[-1,1]$”, Adv. Math., 188 (2004), 337–398 | DOI | MR | Zbl