Non-autonomous Ginzburg–Landau equation and its attractors
Sbornik. Mathematics, Tome 196 (2005) no. 6, pp. 791-815 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The behaviour as $t\to+\infty$ of solutions $\{u(x,t),\ t\geqslant0\}$ of the non-autonomous Ginzburg–Landau (G.–L.) equation is studied. The main attention is focused on the case when the dispersion coefficient $\beta(t)$ in this equation satisfies the inequality $|\beta(t)|>\sqrt3$ for $t\in L$, where $L$ is an unbounded subset of $\mathbb R_+$. In this case the uniqueness theorem for the G.–L. equation is not proved. The trajectory attractor $\mathfrak A$ for this equation is constructed. If the coefficients and the exciting force are almost periodic (a.p.) in time and the uniqueness condition fails, then the trajectory attractor $\mathfrak A$ is proved to consist precisely of the solutions $\{u(x,t),\ t\geqslant0\}$ of the G.-L. equation that admit a bounded extension as solutions of this equation onto the entire time axis $\mathbb R$. The behaviour as $t\to+\infty$ of solutions of a perturbed G.–L. equation with coefficients and the exciting force that are sums of a.p. functions and functions approaching zero in the weak sense as $t\to+\infty$ is also studied.
@article{SM_2005_196_6_a1,
     author = {M. I. Vishik and V. V. Chepyzhov},
     title = {Non-autonomous {Ginzburg{\textendash}Landau} equation and its attractors},
     journal = {Sbornik. Mathematics},
     pages = {791--815},
     year = {2005},
     volume = {196},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_6_a1/}
}
TY  - JOUR
AU  - M. I. Vishik
AU  - V. V. Chepyzhov
TI  - Non-autonomous Ginzburg–Landau equation and its attractors
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 791
EP  - 815
VL  - 196
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_6_a1/
LA  - en
ID  - SM_2005_196_6_a1
ER  - 
%0 Journal Article
%A M. I. Vishik
%A V. V. Chepyzhov
%T Non-autonomous Ginzburg–Landau equation and its attractors
%J Sbornik. Mathematics
%D 2005
%P 791-815
%V 196
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2005_196_6_a1/
%G en
%F SM_2005_196_6_a1
M. I. Vishik; V. V. Chepyzhov. Non-autonomous Ginzburg–Landau equation and its attractors. Sbornik. Mathematics, Tome 196 (2005) no. 6, pp. 791-815. http://geodesic.mathdoc.fr/item/SM_2005_196_6_a1/

[1] Temam R., Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math., 68, Springer-Verlag, New York, 1988 | MR | Zbl

[2] Ghidaglia J. M., Héron B., “Dimension of the attractors associated to the Ginzburg–Landau partial differential equation”, Phys. D, 28 (1987), 282–304 | DOI | MR | Zbl

[3] Doering C. R., Gibbon J. D., Holm D. D., Nicolaenco B., “Low-dimensional behaviour in the complex Ginzburg–Landau equation”, Nonlinearity, 1 (1988), 279–309 | DOI | MR | Zbl

[4] Doering C. R., Gibbon J. D., Levermore C. D., “Weak and strong solutions of the complex Ginzburg–Landau equation”, Phys. D, 71 (1994), 285–318 | DOI | MR | Zbl

[5] Chepyzhov V. V., Vishik M. I., Attractors for equations of mathematical physics, Amer. Math. Soc. Colloq. Publ., 49, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[6] Mielke A., “The complex Ginzburg–Landau equation on large and unbounded domains: sharper bounds and attractors”, Nonlinearity, 10 (1997), 199–222 | DOI | MR | Zbl

[7] Babin A. V., Vishik M. I., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl

[8] Zelik S. V., “The attractor for a nonlinear reaction-diffusion system with a supercritical nonlinearity and it's dimension”, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 24 (2000), 1–25 | MR

[9] Chepyzhov V. V., Vishik M. I., “Trajectory attractors for reaction-diffusion systems”, Topol. Methods Nonlinear Anal., 7:1 (1996), 49–76 | MR | Zbl

[10] Chepyzhov V. V., Vishik M. I., “Evolution equations and their trajectory attractors”, J. Math. Pures Appl. (9), 76:10 (1997), 913–964 | MR | Zbl

[11] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[12] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[13] Temam R., On the theory and numerical analysis of the Navier–Stokes equations, North-Holland, Amsterdam, 1979 | MR | Zbl

[14] Dubinskii Yu. A., “Slabaya skhodimost v nelineinykh ellipticheskikh i parabolicheskikh uravneniyakh”, Matem. sb., 67 (109) (1965), 609–642 | MR | Zbl

[15] Hale J. K., Asymptotic behaviour of dissipative systems, Math. Surveys Monogr., 25, Amer. Math. Soc., Providence, RI, 1988. | MR | Zbl

[16] Levitan B. M., Zhikov V. V., Pochti periodicheskie funktsii i differentsialnye uravneniya, Izd-vo MGU, M., 1978 | MR | Zbl