@article{SM_2005_196_6_a1,
author = {M. I. Vishik and V. V. Chepyzhov},
title = {Non-autonomous {Ginzburg{\textendash}Landau} equation and its attractors},
journal = {Sbornik. Mathematics},
pages = {791--815},
year = {2005},
volume = {196},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2005_196_6_a1/}
}
M. I. Vishik; V. V. Chepyzhov. Non-autonomous Ginzburg–Landau equation and its attractors. Sbornik. Mathematics, Tome 196 (2005) no. 6, pp. 791-815. http://geodesic.mathdoc.fr/item/SM_2005_196_6_a1/
[1] Temam R., Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math., 68, Springer-Verlag, New York, 1988 | MR | Zbl
[2] Ghidaglia J. M., Héron B., “Dimension of the attractors associated to the Ginzburg–Landau partial differential equation”, Phys. D, 28 (1987), 282–304 | DOI | MR | Zbl
[3] Doering C. R., Gibbon J. D., Holm D. D., Nicolaenco B., “Low-dimensional behaviour in the complex Ginzburg–Landau equation”, Nonlinearity, 1 (1988), 279–309 | DOI | MR | Zbl
[4] Doering C. R., Gibbon J. D., Levermore C. D., “Weak and strong solutions of the complex Ginzburg–Landau equation”, Phys. D, 71 (1994), 285–318 | DOI | MR | Zbl
[5] Chepyzhov V. V., Vishik M. I., Attractors for equations of mathematical physics, Amer. Math. Soc. Colloq. Publ., 49, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl
[6] Mielke A., “The complex Ginzburg–Landau equation on large and unbounded domains: sharper bounds and attractors”, Nonlinearity, 10 (1997), 199–222 | DOI | MR | Zbl
[7] Babin A. V., Vishik M. I., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl
[8] Zelik S. V., “The attractor for a nonlinear reaction-diffusion system with a supercritical nonlinearity and it's dimension”, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 24 (2000), 1–25 | MR
[9] Chepyzhov V. V., Vishik M. I., “Trajectory attractors for reaction-diffusion systems”, Topol. Methods Nonlinear Anal., 7:1 (1996), 49–76 | MR | Zbl
[10] Chepyzhov V. V., Vishik M. I., “Evolution equations and their trajectory attractors”, J. Math. Pures Appl. (9), 76:10 (1997), 913–964 | MR | Zbl
[11] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR
[12] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl
[13] Temam R., On the theory and numerical analysis of the Navier–Stokes equations, North-Holland, Amsterdam, 1979 | MR | Zbl
[14] Dubinskii Yu. A., “Slabaya skhodimost v nelineinykh ellipticheskikh i parabolicheskikh uravneniyakh”, Matem. sb., 67 (109) (1965), 609–642 | MR | Zbl
[15] Hale J. K., Asymptotic behaviour of dissipative systems, Math. Surveys Monogr., 25, Amer. Math. Soc., Providence, RI, 1988. | MR | Zbl
[16] Levitan B. M., Zhikov V. V., Pochti periodicheskie funktsii i differentsialnye uravneniya, Izd-vo MGU, M., 1978 | MR | Zbl