Non-autonomous Ginzburg--Landau equation and its attractors
Sbornik. Mathematics, Tome 196 (2005) no. 6, pp. 791-815

Voir la notice de l'article provenant de la source Math-Net.Ru

The behaviour as $t\to+\infty$ of solutions $\{u(x,t),\ t\geqslant0\}$ of the non-autonomous Ginzburg–Landau (G.–L.) equation is studied. The main attention is focused on the case when the dispersion coefficient $\beta(t)$ in this equation satisfies the inequality $|\beta(t)|>\sqrt3$ for $t\in L$, where $L$ is an unbounded subset of $\mathbb R_+$. In this case the uniqueness theorem for the G.–L. equation is not proved. The trajectory attractor $\mathfrak A$ for this equation is constructed. If the coefficients and the exciting force are almost periodic (a.p.) in time and the uniqueness condition fails, then the trajectory attractor $\mathfrak A$ is proved to consist precisely of the solutions $\{u(x,t),\ t\geqslant0\}$ of the G.-L. equation that admit a bounded extension as solutions of this equation onto the entire time axis $\mathbb R$. The behaviour as $t\to+\infty$ of solutions of a perturbed G.–L. equation with coefficients and the exciting force that are sums of a.p. functions and functions approaching zero in the weak sense as $t\to+\infty$ is also studied.
@article{SM_2005_196_6_a1,
     author = {M. I. Vishik and V. V. Chepyzhov},
     title = {Non-autonomous {Ginzburg--Landau} equation and its attractors},
     journal = {Sbornik. Mathematics},
     pages = {791--815},
     publisher = {mathdoc},
     volume = {196},
     number = {6},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_6_a1/}
}
TY  - JOUR
AU  - M. I. Vishik
AU  - V. V. Chepyzhov
TI  - Non-autonomous Ginzburg--Landau equation and its attractors
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 791
EP  - 815
VL  - 196
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_6_a1/
LA  - en
ID  - SM_2005_196_6_a1
ER  - 
%0 Journal Article
%A M. I. Vishik
%A V. V. Chepyzhov
%T Non-autonomous Ginzburg--Landau equation and its attractors
%J Sbornik. Mathematics
%D 2005
%P 791-815
%V 196
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2005_196_6_a1/
%G en
%F SM_2005_196_6_a1
M. I. Vishik; V. V. Chepyzhov. Non-autonomous Ginzburg--Landau equation and its attractors. Sbornik. Mathematics, Tome 196 (2005) no. 6, pp. 791-815. http://geodesic.mathdoc.fr/item/SM_2005_196_6_a1/