Vector-valued Lizorkin--Triebel spaces and sharp trace theory for functions in Sobolev spaces with mixed $L_p$-norm for parabolic problems
Sbornik. Mathematics, Tome 196 (2005) no. 6, pp. 777-790

Voir la notice de l'article provenant de la source Math-Net.Ru

The trace problem on the hypersurface $y_n=0$ is investigated for a function $u=u(y,t)\in L_q(0,T;W_{\underline p}^{\underline m}(\mathbb R_+^n))$ with $\partial_tu\in L_q(0,T; L_{\underline p}(\mathbb R_+^n))$, that is, Sobolev spaces with mixed Lebesgue norm $L_{\underline p,q}(\mathbb R^n_+\times(0,T)) =L_q(0,T;L_{\underline p}(\mathbb R_+^n))$ are considered; here $\underline p=(p_1,\dots,p_n)$ is a vector and $\mathbb R^n_+=\mathbb R^{n-1}\times (0,\infty)$. Such function spaces are useful in the context of parabolic equations. They allow, in particular, different exponents of summability in space and time. It is shown that the sharp regularity of the trace in the time variable is characterized by the Lizorkin–Triebel space $F_{q,p_n}^{1-1/(p_nm_n)}(0,T;L_{\widetilde{\underline p}}(\mathbb R^{n-1}))$, $\underline p=(\widetilde{\underline p},p_n)$. A similar result is established for first order spatial derivatives of $u$. These results allow one to determine the exact spaces for the data in the inhomogeneous Dirichlet and Neumann problems for parabolic equations of the second order if the solution is in the space $L_q(0,T; W_p^2(\Omega))\cap W_q^1(0,T;L_p(\Omega))$ with $p\leqslant q$.
@article{SM_2005_196_6_a0,
     author = {P. Widemier},
     title = {Vector-valued {Lizorkin--Triebel} spaces and sharp trace theory for functions in {Sobolev} spaces with mixed $L_p$-norm for parabolic problems},
     journal = {Sbornik. Mathematics},
     pages = {777--790},
     publisher = {mathdoc},
     volume = {196},
     number = {6},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_6_a0/}
}
TY  - JOUR
AU  - P. Widemier
TI  - Vector-valued Lizorkin--Triebel spaces and sharp trace theory for functions in Sobolev spaces with mixed $L_p$-norm for parabolic problems
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 777
EP  - 790
VL  - 196
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_6_a0/
LA  - en
ID  - SM_2005_196_6_a0
ER  - 
%0 Journal Article
%A P. Widemier
%T Vector-valued Lizorkin--Triebel spaces and sharp trace theory for functions in Sobolev spaces with mixed $L_p$-norm for parabolic problems
%J Sbornik. Mathematics
%D 2005
%P 777-790
%V 196
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2005_196_6_a0/
%G en
%F SM_2005_196_6_a0
P. Widemier. Vector-valued Lizorkin--Triebel spaces and sharp trace theory for functions in Sobolev spaces with mixed $L_p$-norm for parabolic problems. Sbornik. Mathematics, Tome 196 (2005) no. 6, pp. 777-790. http://geodesic.mathdoc.fr/item/SM_2005_196_6_a0/