Vector-valued Lizorkin–Triebel spaces and sharp trace theory for functions in Sobolev spaces with mixed $L_p$-norm for parabolic problems
Sbornik. Mathematics, Tome 196 (2005) no. 6, pp. 777-790 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The trace problem on the hypersurface $y_n=0$ is investigated for a function $u=u(y,t)\in L_q(0,T;W_{\underline p}^{\underline m}(\mathbb R_+^n))$ with $\partial_tu\in L_q(0,T; L_{\underline p}(\mathbb R_+^n))$, that is, Sobolev spaces with mixed Lebesgue norm $L_{\underline p,q}(\mathbb R^n_+\times(0,T)) =L_q(0,T;L_{\underline p}(\mathbb R_+^n))$ are considered; here $\underline p=(p_1,\dots,p_n)$ is a vector and $\mathbb R^n_+=\mathbb R^{n-1}\times (0,\infty)$. Such function spaces are useful in the context of parabolic equations. They allow, in particular, different exponents of summability in space and time. It is shown that the sharp regularity of the trace in the time variable is characterized by the Lizorkin–Triebel space $F_{q,p_n}^{1-1/(p_nm_n)}(0,T;L_{\widetilde{\underline p}}(\mathbb R^{n-1}))$, $\underline p=(\widetilde{\underline p},p_n)$. A similar result is established for first order spatial derivatives of $u$. These results allow one to determine the exact spaces for the data in the inhomogeneous Dirichlet and Neumann problems for parabolic equations of the second order if the solution is in the space $L_q(0,T; W_p^2(\Omega))\cap W_q^1(0,T;L_p(\Omega))$ with $p\leqslant q$.
@article{SM_2005_196_6_a0,
     author = {P. Widemier},
     title = {Vector-valued {Lizorkin{\textendash}Triebel} spaces and sharp trace theory for functions in {Sobolev} spaces with mixed $L_p$-norm for parabolic problems},
     journal = {Sbornik. Mathematics},
     pages = {777--790},
     year = {2005},
     volume = {196},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_6_a0/}
}
TY  - JOUR
AU  - P. Widemier
TI  - Vector-valued Lizorkin–Triebel spaces and sharp trace theory for functions in Sobolev spaces with mixed $L_p$-norm for parabolic problems
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 777
EP  - 790
VL  - 196
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_6_a0/
LA  - en
ID  - SM_2005_196_6_a0
ER  - 
%0 Journal Article
%A P. Widemier
%T Vector-valued Lizorkin–Triebel spaces and sharp trace theory for functions in Sobolev spaces with mixed $L_p$-norm for parabolic problems
%J Sbornik. Mathematics
%D 2005
%P 777-790
%V 196
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2005_196_6_a0/
%G en
%F SM_2005_196_6_a0
P. Widemier. Vector-valued Lizorkin–Triebel spaces and sharp trace theory for functions in Sobolev spaces with mixed $L_p$-norm for parabolic problems. Sbornik. Mathematics, Tome 196 (2005) no. 6, pp. 777-790. http://geodesic.mathdoc.fr/item/SM_2005_196_6_a0/

[1] Krylov N. V., “Parabolicheskie uravneniya v prostranstvakh $L_p$ so smeshannymi normami”, Algebra i analiz, 14:4 (2002), 91–106 | MR | Zbl

[2] von Wahl W., “The equation $u'+A(t)u=f$ in a Hilbert space and $L^p$-estimates for parabolic equations”, J. London Math. Soc., 25 (1982), 483–497 | DOI | MR | Zbl

[3] Iwashita H., “$L_q$–$L_r$ estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier–Stokes initial value problem in $L_q$ spaces”, Math. Ann., 285 (1989), 265–288 | DOI | MR | Zbl

[4] Sohr H., The Navier–Stokes equations, Birkhäuser, Basel, 2001 | MR

[5] von Wahl W., The equations of Navier–Stokes and abstract parabolic equations, Vieweg, Braunschweig, 1985 | MR

[6] Clément P., Prüss J., “Global existence for a semilinear parabolic Volterra equation”, Math. Z., 209 (1992), 17–26 | DOI | MR | Zbl

[7] Krylov N. V., “SPDE's in $L_q(0,\tau;L_p)$ spaces”, Electron. J. Probab., 5 (2000), 1–29 | MR

[8] Triebel H., Theory of function spaces, Birkhäuser, Basel, 1983 | MR | Zbl

[9] Schmeisser H.-J., Triebel H., Fourier analysis and function spaces, Wiley, Chichester, 1987 | MR

[10] Kufner A., John O., Fučik S., Function spaces, Noordhoff Int. Publ., Leyden, 1977 | MR | Zbl

[11] Weidemaier P., “Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed $L_p$-norm”, Electron. Res. Announc. Amer. Math. Soc., 8 (2002), 47–51 | DOI | MR | Zbl

[12] Bugrov Ya. S., “Funktsionalnye prostranstva so smeshannoi normoi”, Izv. AN SSSR. Ser. matem., 35:5 (1971), 1137–1158 | MR | Zbl

[13] Weidemaier P., “On the trace theory for functions in Sobolev spaces with mixed $L_p$-norm”, Czechoslovak Math. J., 44 (1994), 7–20 | MR | Zbl

[14] Weidemaier P., “Existence results in $L_p$–$L_q$-spaces for second order parabolic equations with inhomogeneous boundary conditions”, Progress in partial differential equations, vol. 2 (Proc. Pont-à-Mousson 1997), eds. H. Amann, et al., Longman, Harlow, UK, 1998, 189–200 | MR | Zbl

[15] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, Fizmatlit, M., 1967

[16] Grisvard P., “Commutativité de deux foncteurs d'interpolation et applications. II”, J. Math. Pures Appl., 45 (1966), 207–290 | MR | Zbl

[17] Weidemaier P., “The trace theorem $W^{2,1}_p(\Omega_T)\ni f\mapsto\nabla_x f \in W^{1-1/p,1/2-1/(2p)}_p(\partial\Omega_T)$ revisited”, Comment. Math. Univ. Carolin., 32 (1991), 307–314 | MR | Zbl

[18] Berkolaiko M. Z., “O sledakh obobschennykh prostranstv differentsiruemykh funktsii so smeshannoi normoi”, Dokl. AN SSSR, 277:2 (1984), 270–274 | MR | Zbl

[19] Berkolaiko M. Z., “Sledy funktsii iz obobschennykh prostranstv Soboleva so smeshannoi normoi na proizvolnom koordinatnom podprostranstve. I”, Issledovaniya po geometrii i matematicheskomu analizu, Trudy Instituta matematiki, 7, Nauka, Sibirskoe otdelenie, Novosibirsk, 1987, 30–44 | MR

[20] Berkolaiko M. Z., “Sledy funktsii iz obobschennykh prostranstv Soboleva so smeshannoi normoi na proizvolnom koordinatnom podprostranstve. II”, Issledovaniya po geometrii “v tselom” i matematicheskomu analizu, Trudy Instituta matematiki, 9, Nauka, Sibirskoe otdelenie, Novosibirsk, 1987, 34–41 | MR

[21] Weidemaier P., “Local existence for a parabolic problem with fully nonlinear boundary condition arising in nonlinear heat conduction; an $L^p$-approach”, Semigroup theory and evolution equations, Proc. Delft 1989, Lecture Notes in Pure and Appl. Math., 135, eds. P. Clément et al., M. Dekker, New York, 1991, 519–522 | MR

[22] Weidemaier P., “Local existence for parabolic problems with fully nonlinear boundary condition; an $L^p$-approach”, Ann. Mat. Pura Appl. (4), 160 (1991), 207–222 | DOI | MR | Zbl

[23] Ilin V. P., Solonnikov V. A., “O nekotorykh svoistvakh differentsiruemykh funktsii mnogikh peremennykh”, Trudy MIAN, 66, 1962, 205–226 | MR

[24] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, Fizmatlit, M., 1975 | MR | Zbl

[25] Khardi G., Littlvud Dzh. E., Polia G., Neravenstva, IL, M., 1948