@article{SM_2005_196_6_a0,
author = {P. Widemier},
title = {Vector-valued {Lizorkin{\textendash}Triebel} spaces and sharp trace theory for functions in {Sobolev} spaces with mixed $L_p$-norm for parabolic problems},
journal = {Sbornik. Mathematics},
pages = {777--790},
year = {2005},
volume = {196},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2005_196_6_a0/}
}
TY - JOUR AU - P. Widemier TI - Vector-valued Lizorkin–Triebel spaces and sharp trace theory for functions in Sobolev spaces with mixed $L_p$-norm for parabolic problems JO - Sbornik. Mathematics PY - 2005 SP - 777 EP - 790 VL - 196 IS - 6 UR - http://geodesic.mathdoc.fr/item/SM_2005_196_6_a0/ LA - en ID - SM_2005_196_6_a0 ER -
%0 Journal Article %A P. Widemier %T Vector-valued Lizorkin–Triebel spaces and sharp trace theory for functions in Sobolev spaces with mixed $L_p$-norm for parabolic problems %J Sbornik. Mathematics %D 2005 %P 777-790 %V 196 %N 6 %U http://geodesic.mathdoc.fr/item/SM_2005_196_6_a0/ %G en %F SM_2005_196_6_a0
P. Widemier. Vector-valued Lizorkin–Triebel spaces and sharp trace theory for functions in Sobolev spaces with mixed $L_p$-norm for parabolic problems. Sbornik. Mathematics, Tome 196 (2005) no. 6, pp. 777-790. http://geodesic.mathdoc.fr/item/SM_2005_196_6_a0/
[1] Krylov N. V., “Parabolicheskie uravneniya v prostranstvakh $L_p$ so smeshannymi normami”, Algebra i analiz, 14:4 (2002), 91–106 | MR | Zbl
[2] von Wahl W., “The equation $u'+A(t)u=f$ in a Hilbert space and $L^p$-estimates for parabolic equations”, J. London Math. Soc., 25 (1982), 483–497 | DOI | MR | Zbl
[3] Iwashita H., “$L_q$–$L_r$ estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier–Stokes initial value problem in $L_q$ spaces”, Math. Ann., 285 (1989), 265–288 | DOI | MR | Zbl
[4] Sohr H., The Navier–Stokes equations, Birkhäuser, Basel, 2001 | MR
[5] von Wahl W., The equations of Navier–Stokes and abstract parabolic equations, Vieweg, Braunschweig, 1985 | MR
[6] Clément P., Prüss J., “Global existence for a semilinear parabolic Volterra equation”, Math. Z., 209 (1992), 17–26 | DOI | MR | Zbl
[7] Krylov N. V., “SPDE's in $L_q(0,\tau;L_p)$ spaces”, Electron. J. Probab., 5 (2000), 1–29 | MR
[8] Triebel H., Theory of function spaces, Birkhäuser, Basel, 1983 | MR | Zbl
[9] Schmeisser H.-J., Triebel H., Fourier analysis and function spaces, Wiley, Chichester, 1987 | MR
[10] Kufner A., John O., Fučik S., Function spaces, Noordhoff Int. Publ., Leyden, 1977 | MR | Zbl
[11] Weidemaier P., “Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed $L_p$-norm”, Electron. Res. Announc. Amer. Math. Soc., 8 (2002), 47–51 | DOI | MR | Zbl
[12] Bugrov Ya. S., “Funktsionalnye prostranstva so smeshannoi normoi”, Izv. AN SSSR. Ser. matem., 35:5 (1971), 1137–1158 | MR | Zbl
[13] Weidemaier P., “On the trace theory for functions in Sobolev spaces with mixed $L_p$-norm”, Czechoslovak Math. J., 44 (1994), 7–20 | MR | Zbl
[14] Weidemaier P., “Existence results in $L_p$–$L_q$-spaces for second order parabolic equations with inhomogeneous boundary conditions”, Progress in partial differential equations, vol. 2 (Proc. Pont-à-Mousson 1997), eds. H. Amann, et al., Longman, Harlow, UK, 1998, 189–200 | MR | Zbl
[15] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, Fizmatlit, M., 1967
[16] Grisvard P., “Commutativité de deux foncteurs d'interpolation et applications. II”, J. Math. Pures Appl., 45 (1966), 207–290 | MR | Zbl
[17] Weidemaier P., “The trace theorem $W^{2,1}_p(\Omega_T)\ni f\mapsto\nabla_x f \in W^{1-1/p,1/2-1/(2p)}_p(\partial\Omega_T)$ revisited”, Comment. Math. Univ. Carolin., 32 (1991), 307–314 | MR | Zbl
[18] Berkolaiko M. Z., “O sledakh obobschennykh prostranstv differentsiruemykh funktsii so smeshannoi normoi”, Dokl. AN SSSR, 277:2 (1984), 270–274 | MR | Zbl
[19] Berkolaiko M. Z., “Sledy funktsii iz obobschennykh prostranstv Soboleva so smeshannoi normoi na proizvolnom koordinatnom podprostranstve. I”, Issledovaniya po geometrii i matematicheskomu analizu, Trudy Instituta matematiki, 7, Nauka, Sibirskoe otdelenie, Novosibirsk, 1987, 30–44 | MR
[20] Berkolaiko M. Z., “Sledy funktsii iz obobschennykh prostranstv Soboleva so smeshannoi normoi na proizvolnom koordinatnom podprostranstve. II”, Issledovaniya po geometrii “v tselom” i matematicheskomu analizu, Trudy Instituta matematiki, 9, Nauka, Sibirskoe otdelenie, Novosibirsk, 1987, 34–41 | MR
[21] Weidemaier P., “Local existence for a parabolic problem with fully nonlinear boundary condition arising in nonlinear heat conduction; an $L^p$-approach”, Semigroup theory and evolution equations, Proc. Delft 1989, Lecture Notes in Pure and Appl. Math., 135, eds. P. Clément et al., M. Dekker, New York, 1991, 519–522 | MR
[22] Weidemaier P., “Local existence for parabolic problems with fully nonlinear boundary condition; an $L^p$-approach”, Ann. Mat. Pura Appl. (4), 160 (1991), 207–222 | DOI | MR | Zbl
[23] Ilin V. P., Solonnikov V. A., “O nekotorykh svoistvakh differentsiruemykh funktsii mnogikh peremennykh”, Trudy MIAN, 66, 1962, 205–226 | MR
[24] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, Fizmatlit, M., 1975 | MR | Zbl
[25] Khardi G., Littlvud Dzh. E., Polia G., Neravenstva, IL, M., 1948