Laurent expansion for the determinant of the matrix of scalar resolvents
Sbornik. Mathematics, Tome 196 (2005) no. 5, pp. 743-764 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $A$ be an arbitrary square matrix, $\lambda$ an eigenvalue of it, $\{\xi_1,\dots,\xi_r\}$ and $\{\eta_1,\dots,\eta_r\}$ two systems of linearly independent vectors. A representation of the matrix of scalar resolvents, with $ij$th entry equal by definition to $(\xi_i,(zE-A)^{-1}\eta_j)$, in the form of the product of three matrices $\Xi$, $\Delta(z)$, and $\Psi^T$ is obtained, only one of which, $\Delta(z)$, depends on $z$ and is a rational function of $z$. On the basis of this factorization and the Binet–Cauchy formula a method for finding the principal part of the Laurent series at the point $z=\lambda$ for the determinant of the matrix of scalar resolvents is put forward and the first two coefficients of the series are found. In the case when at least one of them is distinct from zero, the change after the transition from $A$ to $A+B$ of the part of the Jordan normal form corresponding to $\lambda$ is determined, where $B=\sum_{i=1}^r(\,\cdot\,,\xi_i)\eta_i$ is the operator of rank $r$ associated with the systems of vectors $\{\xi_1,\dots,\xi_r\}$ and $\{\eta_1,\dots,\eta_r\}$; and the Jordan basis for the corresponding root subspace of $A+B$ is constructed from Jordan chains of $A$.
@article{SM_2005_196_5_a4,
     author = {S. V. Savchenko},
     title = {Laurent expansion for the determinant of the matrix of scalar resolvents},
     journal = {Sbornik. Mathematics},
     pages = {743--764},
     year = {2005},
     volume = {196},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_5_a4/}
}
TY  - JOUR
AU  - S. V. Savchenko
TI  - Laurent expansion for the determinant of the matrix of scalar resolvents
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 743
EP  - 764
VL  - 196
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_5_a4/
LA  - en
ID  - SM_2005_196_5_a4
ER  - 
%0 Journal Article
%A S. V. Savchenko
%T Laurent expansion for the determinant of the matrix of scalar resolvents
%J Sbornik. Mathematics
%D 2005
%P 743-764
%V 196
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2005_196_5_a4/
%G en
%F SM_2005_196_5_a4
S. V. Savchenko. Laurent expansion for the determinant of the matrix of scalar resolvents. Sbornik. Mathematics, Tome 196 (2005) no. 5, pp. 743-764. http://geodesic.mathdoc.fr/item/SM_2005_196_5_a4/

[1] Savchenko S. V., “Ob izmenenii spektralnykh svoistv matritsy pri vozmuschenii dostatochno nizkogo ranga”, Funkts. analiz i prilozh., 38:1 (2004), 85–88 | MR | Zbl

[2] Hörmander L., Melin A., “A remark on perturbations of compact operators”, Math. Scand., 75 (1994), 255–262 | MR | Zbl

[3] Moro J., Dopico F. M., “Low rank perturbation of Jordan structure”, SIAM J. Matrix Anal. Appl., 25:2 (2003), 495–506 | DOI | MR | Zbl

[4] Elsner L., Olesky D. D., van den Driessche P., “Low rank perturbations and the spectrum of a tridiagonal sign pattern”, Linear Algebra Appl., 374 (2003), 219–230 | DOI | MR | Zbl

[5] Savchenko S. V., “On the Perron roots of principal submatrices of co-order one of irreducible nonnegative matrices”, Linear Algebra Appl., 361 (2003), 257–277 | DOI | MR | Zbl

[6] Markus A. S., Parilis E. E., “Ob izmenenii zhordanovoi struktury matritsy pri malykh vozmuscheniyakh”, Matem. issledovaniya, 54 (1980), 98–109 | MR | Zbl

[7] Den Boer H., Thijsse G. Ph. A., “Semi-stability of sums of partial multiplicities under additive perturbation”, Integral Equations Operator Theory, 3 (1980), 23–42 | DOI | MR | Zbl

[8] Matsaev V., Olshevsky V., “Cyclic dimensions, kernel multiplicities, and Cohberg–Kaashoek numbers”, Linear Algebra Appl., 239 (1996), 161–174 | MR | Zbl

[9] Kato T., Perturbation theory for linear operators, Springer, Berlin, 1980 | MR

[10] Baumgärtel H., Analytic perturbation theory for matrices and operators, Birkhäuser, Basel, 1985 | MR | Zbl

[11] Lidskii V. B., “K teorii vozmuschenii nesamosopryazhennykh operatorov”, ZhVM i MF, 6:1 (1966), 52–60 | MR | Zbl

[12] Moro J., Dopico F. M., “First order eigenvalue perturbation theory and the Newton diagram”, Proceedings of the Second Conference on Applied Mathematics and Scientific Computing (Dubrovnik, 2001), Kluwer Acad. Publ., New York, 2003, 143–175 | MR | Zbl

[13] Moro J., Burke J. V., Overton M. L., “On the Lidskii–Vishik–Lyusternik perturbation theory for eigenvalues of matrices with arbitrary Jordan structure”, SIAM J. Matrix Anal. Appl., 18 (1997), 793–817 | DOI | MR | Zbl

[14] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967 | MR

[15] Gokhberg I. Ts., Krein M. G., “Osnovnye polozheniya o defektnykh i kornevykh chislakh i indeksakh lineinykh operatorov”, UMH, 12:2 (1957), 43–118 | MR

[16] Weyr E., “Zur Theorie der bilinearen Formen”, Monatsh. Math., 1 (1890), 163–236 | DOI | MR

[17] Thompson R. C., “Invariant factors under rank one perturbations”, Canad. J. Math., 32:1 (1980), 240–245 | MR | Zbl