Asymptotics of the eigenelements of the Laplacian with singular perturbations of boundary conditions on narrow and thin sets
Sbornik. Mathematics, Tome 196 (2005) no. 5, pp. 703-741 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Perturbations of the three-dimensional Dirichlet problem in a bounded domain are studied. One type of perturbation is change of type of the boundary condition on a narrow strip contracting to a closed curve on the boundary. The second type of perturbation is effected by cutting out in the domain a thin ‘toroidal’ body, also contracting to a closed curve (but now contained inside the domain) and imposing a Neumann boundary condition at the boundary of this thin body. For these problems the method of matched asymptotic expansions is used to construct complete asymptotics (in a small parameter) of the eigenvalues, converging to the simple eigenvalues of the unperturbed problem, and of the corresponding eigenfunctions. The small parameter is the width of the strip and the diameter of a section of the torus, respectively.
@article{SM_2005_196_5_a3,
     author = {M. Yu. Planida},
     title = {Asymptotics of the eigenelements of the {Laplacian} with singular perturbations of boundary conditions on narrow and thin sets},
     journal = {Sbornik. Mathematics},
     pages = {703--741},
     year = {2005},
     volume = {196},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2005_196_5_a3/}
}
TY  - JOUR
AU  - M. Yu. Planida
TI  - Asymptotics of the eigenelements of the Laplacian with singular perturbations of boundary conditions on narrow and thin sets
JO  - Sbornik. Mathematics
PY  - 2005
SP  - 703
EP  - 741
VL  - 196
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2005_196_5_a3/
LA  - en
ID  - SM_2005_196_5_a3
ER  - 
%0 Journal Article
%A M. Yu. Planida
%T Asymptotics of the eigenelements of the Laplacian with singular perturbations of boundary conditions on narrow and thin sets
%J Sbornik. Mathematics
%D 2005
%P 703-741
%V 196
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2005_196_5_a3/
%G en
%F SM_2005_196_5_a3
M. Yu. Planida. Asymptotics of the eigenelements of the Laplacian with singular perturbations of boundary conditions on narrow and thin sets. Sbornik. Mathematics, Tome 196 (2005) no. 5, pp. 703-741. http://geodesic.mathdoc.fr/item/SM_2005_196_5_a3/

[1] Van-Daik M., Metody vozmuschenii v mekhanike zhidkosti, Mir, M., 1967

[2] Babich V. M., Buldyrev V. S., Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972 | MR

[3] Marchenko V. A., Khruslov E. Ya., Kraevye zadachi v oblastyakh s melkozernistoi granitsei, Naukova dumka, Kiev, 1974 | MR

[4] Sanches-Palensia E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[5] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh. Matematicheskie zadachi mekhaniki kompozitsionnykh materialov, Nauka, M., 1984 | MR | Zbl

[6] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[7] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, Izd-vo MGU, M., 1990 | Zbl

[8] Mazya V. G., Nazarov S. A., Plamenevskii B. A., Asimptotika reshenii ellipticheskikh kraevykh zadach pri singulyarnom vozmuschenii oblasti, Izd-vo Tbilisskogo un-ta, Tbilisi, 1981 | Zbl

[9] Ilin A. M., “Kraevaya zadacha dlya ellipticheskogo uravneniya vtorogo poryadka v oblasti s uzkoi schelyu. I. Dvumernyi sluchai”, Matem. sb., 99 (141) (1976), 514–537 | MR | Zbl

[10] Ilin A. M., “Kraevaya zadacha dlya ellipticheskogo uravneniya vtorogo poryadka v oblasti s uzkoi schelyu. II. Oblast s malym otverstiem”, Matem. sb., 103 (145) (1977), 265–284 | MR | Zbl

[11] Fedoryuk M. V., “Zadacha Dirikhle dlya operatora Laplasa vo vneshnosti tonkogo tela vrascheniya”, Trudy sem. im. S. L. Soboleva, no. 1, In-t matematiki SO AN SSSR, Novosibirsk, 1980, 113–131 | MR

[12] Ilin A. M., “Issledovanie asimptotiki resheniya ellipticheskoi kraevoi zadachi v oblasti s malym otverstiem”, Trudy sem. im. I. G. Petrovskogo, no. 6, Izd-vo MGU, M., 1981, 57–82

[13] Chechkin G. A., “Usrednenie kraevykh zadach s singulyarnym vozmuscheniem granichnykh uslovii”, Matem. sb., 184:6 (1993), 99–150 | MR | Zbl

[14] Argatov I. I., Nazarov S. A., “Asimptoticheskoe reshenie zadachi Sinorini s prepyatstviem na tonkom prodolgovatom mnozhestve”, Matem. sb., 187:10 (1996), 3–32 | MR | Zbl

[15] Nazarov S. A., Paukshto M. V., Diskretnye modeli i osrednenie v zadachakh teorii uprugosti, LGU, L., 1984

[16] Samarskii A. A., “O vliyanii zakrepleniya na sobstvennye chastoty zamknutykh ob'emov”, Dokl. AN SSSR, 63 (1948), 631–634 | MR | Zbl

[17] Swanson C. A., “Asymptotic variational formulae for eigenvalues”, Canad. Math. Bull., 6:1 (1963), 15–25 | MR | Zbl

[18] Dnestrovskii Yu. N., “Ob izmenenii sobstvennykh chisel pri izmenenii granitsy oblastei”, Vestn. MGU. Ser. 1. Matem., mekh., 1964, no. 9, 61–74 | MR

[19] Ozawa S., “Singular variation of domains and eigenvalues of the Laplacian”, Duke Math. J., 48 (1981), 767–778 | DOI | MR | Zbl

[20] Mazya V. G., Nazarov S. P., Plamenevskii B. A., “Asimptoticheskie razlozheniya sobstvennykh chisel kraevykh zadach dlya operatora Laplasa v oblastyakh s malymi otverstiyami”, Izv. AN SSSR. Ser. matem., 48 (1984), 347–371 | MR

[21] Gadylshin R. R., Ilin A. M., “Asimptotika sobstvennykh znachenii zadachi Dirikhle v oblasti s uzkoi schelyu”, Matem. sb., 189:4 (1998), 25–48 | MR | Zbl

[22] Jimbo S., “The singularity perturbed domain and the characterization for the eigenfunctions with Neumann boundary condition”, J. Differential Equations, 77 (1989), 322–350 | DOI | MR | Zbl

[23] Hempel R., Seco L., Simon B., “The essential spectrum of Neumann Laplacians on some bounded singular domains”, J. Funct. Anal., 102 (1991), 448–483 | DOI | MR | Zbl

[24] Gadylshin R. R., “Asimptotika vtoroi sobstvennoi chastoty dlya sistemy dvukh tel, soedinennykh tonkoi peremychkoi”, TMF, 97:1 (1993), 68–77 | MR | Zbl

[25] Gadylshin R. R., “O sobstvennykh chastotakh tel s tonkimi otrostkami. II. Asimptotiki”, Matem. zametki, 55:1 (1994), 20–34 | MR | Zbl

[26] Arrieta J. M., “Neumann eigenvalue problems on exterior perturbations of the domain”, J. Differential Equations, 118 (1995), 54–103 | DOI | MR | Zbl

[27] Gadylshin R. R., “Rasscheplenie kratnogo sobstvennogo znacheniya v kraevoi zadache dlya membrany, zakreplennoi na malom uchastke granitsy”, Sib. matem. zhurn., 34:3 (1993), 43–61 | MR | Zbl

[28] Gadylshin R. R., “Asimptotika sobstvennogo znacheniya singulyarno vozmuschennoi ellipticheskoi zadachi s malym parametrom v granichnom uslovii”, Differents. uravneniya, 22:4 (1986), 640–652 | MR | Zbl

[29] Gadylshin R. R., “Rasscheplenie kratnogo sobstvennogo znacheniya zadachi Dirikhle dlya operatora Laplasa pri singulyarnom vozmuschenii granichnogo usloviya”, Matem. zametki, 52:4 (1992), 42–55 | MR | Zbl

[30] Gadylshin R. R., “O vozmuschenii spektra laplasiana pri smene tipa granichnogo usloviya na maloi chasti granitsy”, ZhVM i MF, 36:7 (1996), 77–88 | MR

[31] Gadylshin R. R., “Ob asimptotike sobstvennykh znachenii dlya periodicheski zakreplennoi membrany”, Algebra i analiz, 10:1 (1998), 3–19 | MR | Zbl

[32] Gadylshin R. R., “Asimptotiki sobstvennykh znachenii kraevoi zadachi s bystroostsilliruyuschimi granichnymi usloviyami”, Differents. uravneniya, 35:4 (1999), 540–551 | MR

[33] Borisov D. I., “O kraevoi zadache v tsilindre s chastoi smenoi tipa granichnykh uslovii”, Matem. sb., 193:7 (2002), 37–68 | MR | Zbl

[34] Borisov D. I., “On a model boundary value problem for Laplacian with frequently alternating type of boundary condition”, Asymptot. Anal., 35:1 (2003), 1–26 | MR | Zbl

[35] Borisov D. I., “Asimptotiki i otsenki sobstvennykh elementov laplasiana s chastoi neperiodicheskoi smenoi granichnykh uslovii”, Izv. RAN. Ser. matem., 67:6 (2003), 23–70 | MR | Zbl

[36] Planida M. Yu., “O skhodimosti reshenii singulyarno vozmuschennykh kraevykh zadach dlya laplasiana”, Matem. zametki, 71:6 (2002), 867–877 | MR | Zbl

[37] Planida M. Yu., “Ob asimptotike sobstvennykh znachenii dlya tsilindra, teploizolirovannogo na uzkoi polose”, ZhVM i MF, 43:3 (2003), 422–432 | MR | Zbl

[38] Planida M. Yu., “Ob asimptotike sobstvennykh znachenii laplasiana v oblasti s granichnym usloviem Neimana na vyrezannoi tonkoi trubke”, ZhVM i MF, 44:4 (2004), 717–730 | MR | Zbl

[39] Planida M. Yu., “Asimptotiki sobstvennykh elementov operatora Laplasa so smenoi tipa granichnogo usloviya na uzkoi uploschennoi polose”, Matem. zametki, 75 (2004), 236–252 | MR | Zbl

[40] Planida M. Yu., “Asymptotics for eigenvalues of Laplacian with Neumann boundary condition on a thin tube cut out”, C. R. Acad. Sci. Ser. Mechan., 331 (2003), 531–536

[41] Mikhlin S. G., Lineinye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976 | MR | Zbl

[42] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1987 | MR | Zbl

[43] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR

[44] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1977 | MR | Zbl

[45] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR